KLdiv {rags2ridges} | R Documentation |
Kullback-Leibler divergence between two multivariate normal distributions
Description
Function calculating the Kullback-Leibler divergence between two multivariate normal distributions.
Usage
KLdiv(Mtest, Mref, Stest, Sref, symmetric = FALSE)
Arguments
Mtest |
A |
Mref |
A |
Stest |
A covariance |
Sref |
A covariance |
symmetric |
A |
Details
The Kullback-Leibler (KL) information (Kullback and Leibler, 1951; also known
as relative entropy) is a measure of divergence between two probability
distributions. Typically, one distribution is taken to represent the ‘true’
distribution and functions as the reference distribution while the other is
taken to be an approximation of the true distribution. The criterion then
measures the loss of information in approximating the reference distribution.
The KL divergence between two p
-dimensional multivariate normal
distributions
\mathcal{N}^{0}_{p}(\boldsymbol{\mu}_{0}, \mathbf{\Sigma}_{0})
and \mathcal{N}^{1}_{p}(\boldsymbol{\mu}_{1}, \mathbf{\Sigma}_{1})
is given as
\mathrm{I}_{KL}(\mathcal{N}^{0}_{p} \| \mathcal{N}^{1}_{p}) =
\frac{1}{2}\left\{\mathrm{tr}(\mathbf{\Omega}_{1}\mathbf{\Sigma}_{0})
+ (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{\mathrm{T}}
\mathbf{\Omega}_{1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}) - p
- \ln|\mathbf{\Sigma}_{0}| + \ln|\mathbf{\Sigma}_{1}| \right\},
where \mathbf{\Omega} = \mathbf{\Sigma}^{-1}
. The KL divergence is not
a proper metric as \mathrm{I}_{KL}(\mathcal{N}^{0}_{p} \|
\mathcal{N}^{1}_{p}) \neq \mathrm{I}_{KL}(\mathcal{N}^{1}_{p} \|
\mathcal{N}^{0}_{p})
. When symmetric = TRUE
the function calculates
the symmetric KL divergence (also referred to as Jeffreys information), given
as
\mathrm{I}_{KL}(\mathcal{N}^{0}_{p} \| \mathcal{N}^{1}_{p}) +
\mathrm{I}_{KL}(\mathcal{N}^{1}_{p} \| \mathcal{N}^{0}_{p}).
Value
Function returns a numeric
representing the (symmetric)
Kullback-Leibler divergence.
Author(s)
Wessel N. van Wieringen, Carel F.W. Peeters <carel.peeters@wur.nl>
References
Kullback, S. and Leibler, R.A. (1951). On Information and Sufficiency. Annals of Mathematical Statistics 22: 79-86.
See Also
Examples
## Define population
set.seed(333)
p = 25
n = 1000
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
Cov0 <- covML(X)
mean0 <- colMeans(X)
## Obtain sample from population
samples <- X[sample(nrow(X), 10),]
Cov1 <- covML(samples)
mean1 <- colMeans(samples)
## Regularize singular Cov1
P <- ridgeP(Cov1, 10)
CovR <- solve(P)
## Obtain KL divergence
KLdiv(mean1, mean0, CovR, Cov0)