dose.distr {radir} | R Documentation |
Inverse regression model for radiation biodosimetry
Description
The function allows the user to estimate radiation doses distribution using the methodology described in Higueras et al. (2014).
Usage
dose.distr(f, pars, beta, cov, cells, dics, m.prior="gamma",
d.prior="uniform", prior.param=c(0,"Inf"), stdf=6, nsim=1000)
Arguments
f |
dose-response function, as an |
pars |
string vector containing the parameters in |
beta |
estimates of the parameters. |
cov |
variance-covariance matrix. |
cells |
patient information, number of cells examined. |
dics |
patient information, observed number of aberrations. |
m.prior |
string containing the prior distribution of the mean. It can be |
d.prior |
string containing the prior distribution of the dose. It can be |
prior.param |
vector of length 2 containing the parameters of the distribution of the dose prior. The parametrization for the |
stdf |
Approximated standard deviation factor. This input is useful to control the ends of the calibrative density; i.e. in case the tails of the calibrative dose density are very long this value could be reduced, or viceversa. Its default value is 6. |
nsim |
Number of simulations to base the results on. Its default value is 1000. |
Value
An object of class dose.radir
containing the distribution of the estimated doses.
Author(s)
David Moriña (Barcelona Graduate School of Mathematics), Manuel Higueras (Basque Center for Applied Mathematics) and Pedro Puig (Universitat Autònoma de Barcelona)
Mantainer: David Moriña Soler <david.morina@uab.cat>
References
Higueras M, Puig P, Ainsbury EA, Rothkamm K. A new inverse regression model applied to radiation biodosimetry. Proc R Soc A 2015;471, http://dx.doi.org/10.1098/rspa.2014.0588
See Also
radir-package
, ci.dose.radir
, pr.dose.radir
Examples
### Example 3 (a)
f <- expression(b1*x+b2*x^2)
pars <- c("b1","b2")
beta <- c(3.126e-3, 2.537e-2)
cov <- matrix(c(7.205e-06,-3.438e-06,-3.438e-06,2.718e-06),nrow=2)
### (a)
ex1.a <- dose.distr(f, pars, beta, cov, cells=1811, dics=102,
m.prior="normal", d.prior="uniform", prior.param=c(0, Inf))