nn {radiant.model} | R Documentation |
Neural Networks using nnet
Description
Neural Networks using nnet
Usage
nn(
dataset,
rvar,
evar,
type = "classification",
lev = "",
size = 1,
decay = 0.5,
wts = "None",
seed = NA,
check = "standardize",
form,
data_filter = "",
arr = "",
rows = NULL,
envir = parent.frame()
)
Arguments
dataset |
Dataset |
rvar |
The response variable in the model |
evar |
Explanatory variables in the model |
type |
Model type (i.e., "classification" or "regression") |
lev |
The level in the response variable defined as _success_ |
size |
Number of units (nodes) in the hidden layer |
decay |
Parameter decay |
wts |
Weights to use in estimation |
seed |
Random seed to use as the starting point |
check |
Optional estimation parameters ("standardize" is the default) |
form |
Optional formula to use instead of rvar and evar |
data_filter |
Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000") |
arr |
Expression to arrange (sort) the data on (e.g., "color, desc(price)") |
rows |
Rows to select from the specified dataset |
envir |
Environment to extract data from |
Details
See https://radiant-rstats.github.io/docs/model/nn.html for an example in Radiant
Value
A list with all variables defined in nn as an object of class nn
See Also
summary.nn
to summarize results
plot.nn
to plot results
predict.nn
for prediction
Examples
nn(titanic, "survived", c("pclass", "sex"), lev = "Yes") %>% summary()
nn(titanic, "survived", c("pclass", "sex")) %>% str()
nn(diamonds, "price", c("carat", "clarity"), type = "regression") %>% summary()