m_j_sgc {ra4bayesmeta} | R Documentation |
Optimization function for the SGC(m) prior: Approximate Jeffreys reference posterior
Description
Numerically determines the parameter value m=m_J
of the SGC(m
) prior,
such that the Hellinger distance between the marginal posteriors for the heterogeneity
standard deviation \tau
induced by the SGC(m_J
) and Jeffreys (improper) reference prior
is minimal.
Usage
m_j_sgc(df, upper=3, digits=2, mu.mean=0, mu.sd=4)
Arguments
df |
data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates. |
upper |
upper bound for parameter |
digits |
specifies the desired precision of the parameter value |
mu.mean |
mean of the normal prior for the effect mu. |
mu.sd |
standard deviation of the normal prior for the effect mu. |
Details
See the Supplementary Material of Ott et al. (2021, Section 2.6) for details.
Value
Parameter value m=m_J
of the SGC(m
) prior. Real number > 1.
Warning
This function takes several minutes to run if the desired precision
is digits=2
and even longer for higher precision.
References
Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Statistics in Medicine. doi:10.1002/sim.9076
See Also
Examples
# for aurigular acupuncture (AA) data set
data(aa)
# warning: it takes ca. 2 min. to run this function
m_j_sgc(df=aa, digits=1)