M_inf_sigc {ra4bayesmeta} | R Documentation |
Optimization function for the SIGC(M) prior: Adjust the prior to a target relative latent model complexity (RLMC)
Description
Computes the parameter value of the SIGC(
) prior,
such that the relative latent model complexity (RLMC) with respect
to the reference threshold is approximately
rlmc
.
The reference threshold is chosen as the (1-alpha
)-quantile of the
SIGC() prior.
Usage
M_inf_sigc(rlmc, df, alpha=0.5, truncation=5*10^6)
Arguments
rlmc |
target RLMC value. Real number in |
df |
data frame with one column "sigma" containing the standard errors of the estimates for the individual studies. |
alpha |
determines the (1- |
truncation |
upper bound for the parameter value |
Details
See the Supplementary Material of Ott et al. (2021), Section 2.3.2,
for the formulas and explanations.
Note that the parameter value does depend
on the data set considered.
Value
Parameter value of the SIGC(
) prior. Real number > 1.
Warning
Occasionally, the formula for given in the Supplementary Material of
Ott et al. (2021, Section 2.3.2)
yields values larger than 5*10^6. This can cause numerical problems in the
bayesmeta
function.
Therefore, we truncate the parameter value at the
empirically determined threshold 5*10^6 by default.
References
Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Statistics in Medicine. doi:10.1002/sim.9076
See Also
Examples
# extreme RLMC target value close to 1 used in Ott et al. (2021)
# for the aurigular acupuncture (AA) data set
data(aa)
M_inf_sigc(df=aa, rlmc=0.9999)
# for the respiratory tract infections (RTI) data set
data(rti)
M_inf_sigc(df=rti, rlmc=0.9999)
# 75% quantile instead of the median as ref. threshold
M_inf_sigc(df=rti, rlmc=0.9999, alpha=0.25)