quadratic_2008 {rTPC} | R Documentation |
Quadratic model for fitting thermal performance curves
Description
Quadratic model for fitting thermal performance curves
Usage
quadratic_2008(temp, a, b, c)
Arguments
temp |
temperature in degrees centigrade |
a |
parameter that defines the rate at 0 ºC |
b |
parameter with no biological meaning |
c |
parameter with no biological meaning |
Details
Equation:
rate = a + b \cdot temp + c \cdot temp^2
Start values in get_start_vals
are derived from the data using previous methods in the literature
Limits in get_lower_lims
and get_upper_lims
are based on extreme values that are unlikely to occur in ecological settings.
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Note
Generally we found this model easy to fit.
References
Montagnes, David JS, et al. Short‐term temperature change may impact freshwater carbon flux: a microbial perspective. Global Change Biology 14.12: 2823-2838. (2008)
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'quadratic_2008')
# fit model
mod <- nls.multstart::nls_multstart(rate~quadratic_2008(temp = temp, a, b, c),
data = d,
iter = c(4,4,4),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'quadratic_2008'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'quadratic_2008'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()