kamykowski_1985 {rTPC} | R Documentation |
Kamykowski model for fitting thermal performance curves
Description
Kamykowski model for fitting thermal performance curves
Usage
kamykowski_1985(temp, tmin, tmax, a, b, c)
Arguments
temp |
temperature in degrees centigrade |
tmin |
low temperature (ºC) at which rates become negative |
tmax |
high temperature (ºC) at which rates become negative |
a |
parameter with no biological meaning |
b |
parameter with no biological meaning |
c |
parameter with no biological meaning |
Details
Equation:
rate= a \cdot \big( 1 - exp^{-b\cdot \big(temp-t_{min}\big)}\big) \cdot \big( 1-exp^{-c \cdot \big(t_{max}-temp\big)}\big)
Start values in get_start_vals
are derived from the data or sensible values from the literature.
Limits in get_lower_lims
and get_upper_lims
are derived from the data or based extreme values that are unlikely to occur in ecological settings.
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Note
Generally we found this model easy to fit.
References
Kamykowski, Daniel. A survey of protozoan laboratory temperature studies applied to marine dinoflagellate behaviour from a field perspective. Contributions in Marine Science. (1985).
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'kamykowski_1985')
# fit model
mod <- nls.multstart::nls_multstart(rate~kamykowski_1985(temp = temp, tmin, tmax, a, b, c),
data = d,
iter = c(3,3,3,3,3),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'kamykowski_1985'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'kamykowski_1985'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()