gaussian_1987 {rTPC} | R Documentation |
Gaussian model for fitting thermal performance curves
Description
Gaussian model for fitting thermal performance curves
Usage
gaussian_1987(temp, rmax, topt, a)
Arguments
temp |
temperature in degrees centigrade |
rmax |
maximum rate at optimum temperature |
topt |
optimum temperature (ºC) |
a |
related to the full curve width |
Details
Equation:
rate = r_{max} \cdot exp^{\bigg(-0.5 \left(\frac{|temp-t_{opt}|}{a}\right)^2\bigg)}
Start values in get_start_vals
are derived from the data
Limits in get_lower_lims
and get_upper_lims
are based on extreme values that are unlikely to occur in ecological settings.
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Note
Generally we found this model easy to fit.
References
Lynch, M., Gabriel, W., Environmental tolerance. The American Naturalist. 129, 283–303. (1987)
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'gaussian_1987')
# fit model
mod <- nls.multstart::nls_multstart(rate~gaussian_1987(temp = temp,rmax, topt,a),
data = d,
iter = c(4,4,4),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'gaussian_1987'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'gaussian_1987'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()
[Package rTPC version 1.0.4 Index]