boatman_2017 {rTPC} | R Documentation |
Boatman model for fitting thermal performance curves
Description
Boatman model for fitting thermal performance curves
Usage
boatman_2017(temp, rmax, tmin, tmax, a, b)
Arguments
temp |
temperature in degrees centigrade |
rmax |
the rate at optimum temperature |
tmin |
low temperature (ºC) at which rates become negative |
tmax |
high temperature (ºC) at which rates become negative |
a |
shape parameter to adjust the skewness of the curve |
b |
shape parameter to adjust the kurtosis of the curve |
Details
Equation:
rate= r_{max} \cdot \left(sin\bigg(\pi\left(\frac{temp-t_{min}}{t_{max} - t_{min}}\right)^{a}\bigg)\right)^{b}
Start values in get_start_vals
are derived from the data or sensible values from the literature.
Limits in get_lower_lims
and get_upper_lims
are derived from the data or based extreme values that are unlikely to occur in ecological settings.
Value
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Note
Generally we found this model easy to fit.
References
Boatman, T. G., Lawson, T., & Geider, R. J. A key marine diazotroph in a changing ocean: The interacting effects of temperature, CO2 and light on the growth of Trichodesmium erythraeum IMS101. PLoS ONE, 12, e0168796 (2017)
Examples
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'boatman_2017')
# fit model
mod <- nls.multstart::nls_multstart(rate~boatman_2017(temp = temp, rmax, tmin, tmax, a, b),
data = d,
iter = c(4,4,4,4,4),
start_lower = start_vals - 10,
start_upper = start_vals + 10,
lower = get_lower_lims(d$temp, d$rate, model_name = 'boatman_2017'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'boatman_2017'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()