sfaClassify {rSFA} | R Documentation |
Predict Class for SFA classification
Description
Create a SFA classification mode, predict & evaluate on new data (xtst,realc_tst).
Author of orig. matlab version: Wolfgang Konen, May 2009 - Jan 2010
See also [Berkes05] Pietro Berkes: Pattern recognition with Slow Feature Analysis.
Cognitive Sciences EPrint Archive (CogPrint) 4104, http://cogprints.org/4104/ (2005)
Usage
sfaClassify(x, realclass, xtst = 0, realcTst = 0, opts)
Arguments
x |
NREC x IDIM, training input data |
realclass |
1 x NREC, training class labels |
xtst |
NTST x IDIM, test input data |
realcTst |
1 x NTST, test class labels |
opts |
list with several parameter settings:
|
Value
list res
containing
res$errtrn |
1 x 2 matrix: error rate with / w/o SFA on training set |
res$errtst |
1 x 2 matrix: error rate with / w/o SFA on test set |
res$y |
output from SFA when applied to training data |
res$ytst |
output from SFA when applied to test data |
res$predT |
predictions with SFA + GaussClassifier on test set |
res$predX |
predictions w/o SFA (only GaussClassifier) on test set (only if opts.xFilename exists) |