sfaClassify {rSFA}R Documentation

Predict Class for SFA classification

Description

Create a SFA classification mode, predict & evaluate on new data (xtst,realc_tst).
Author of orig. matlab version: Wolfgang Konen, May 2009 - Jan 2010
See also [Berkes05] Pietro Berkes: Pattern recognition with Slow Feature Analysis. Cognitive Sciences EPrint Archive (CogPrint) 4104, http://cogprints.org/4104/ (2005)

Usage

sfaClassify(x, realclass, xtst = 0, realcTst = 0, opts)

Arguments

x

NREC x IDIM, training input data

realclass

1 x NREC, training class labels

xtst

NTST x IDIM, test input data

realcTst

1 x NTST, test class labels

opts

list with several parameter settings:

gaussdim
...
*Filename

[* = s,g,x] from where to load the models (see sfaClassify)

Value

list res containing

res$errtrn

1 x 2 matrix: error rate with / w/o SFA on training set

res$errtst

1 x 2 matrix: error rate with / w/o SFA on test set

res$y

output from SFA when applied to training data

res$ytst

output from SFA when applied to test data

res$predT

predictions with SFA + GaussClassifier on test set

res$predX

predictions w/o SFA (only GaussClassifier) on test set (only if opts.xFilename exists)

See Also

sfaClassPredict sfaExecute


[Package rSFA version 1.5 Index]