robust.attributes.chart.unbalanced {rQCC} | R Documentation |
Robust attributes control charts with balanced/unbalanced samples
Description
Constructs the robust g and h attributes control charts with balanced/unbalanced samples.
Usage
racc (x, gamma, type=c("g","h","t"), parameter, gEstimator=c("cdf", "MM"),
tModel=c("E", "W"), location.shift = 0, sigmaFactor=3, nk)
Arguments
x |
a numeric vector of the number of nonconforming units. |
gamma |
a numeric value for a inlier proportion. gamma should be between 0 and 1 (smaller value means more trimming). |
type |
a character string specifying the type of control chart. |
parameter |
a known Bernoulli parameter value for the |
gEstimator |
a method for estimating the Bernoulli parameter for |
tModel |
Probability model for |
location.shift |
a known location shift parameter value for |
sigmaFactor |
a factor for the standard deviation ( |
nk |
sample size for Phase-II. If |
Details
racc
constructs the attributes control charts
for nonconforming units (p
and np
charts)
and for nonconformities per unit (c
and u
charts).
Value
racc
returns an object of class "racc".
The function summary
is used to obtain and print a summary of the results
and the function plot
is used to plot the control chart.
Author(s)
Chanseok Park
References
Park, C., L. Ouyang, and M. Wang (2021). Robust g-type quality control charts for monitoring nonconformities. Computers and Industrial Engineering, 162, 107765.
Kaminsky, F. C., J. C. Benneyan and R. D. Davis (1992). Statistical Control Charts Based on a Geometric Distribution. Journal of Quality Technology, 24, 63-69.
Examples
# ===============================
# Example 1: g and h charts
# -------------------------------
# Refer to Kaminsky et al. (1992) and Table 2 of Park, et al. (2021).
tmp = c(
11, 2, 8, 2, 4, 1, 1, 11, 2, 1, 1, 7, 1, 1, 9,
5, 1, 3, 6, 5, 13, 2, 3, 3, 4, 3, 2, 6, 1, 5,
2, 2, 8, 3, 1, 1, 3, 4, 6, 5, 2, 8, 1, 1, 4,
13, 10, 15, 5, 2, 3, 6, 1, 5, 8, 9, 1, 18, 3, 1,
3, 7, 14, 3, 1, 7, 7, 1, 8, 1, 4, 1, 6, 1, 1,
1, 14, 2, 3, 7, 19, 9, 7, 1, 8, 5, 1, 1, 6, 1,
9, 5, 6, 2, 2, 8, 15, 2, 3, 3, 4, 7, 11, 4, 6,
7, 5, 1, 14, 8, 3, 3, 5, 21,10, 11, 1, 6, 1, 2,
4, 1, 2, 11, 5, 3, 5, 4, 10, 3, 1, 4, 7, 3, 2,
3, 5, 4, 2, 3, 5, 1, 4, 11,17, 1, 13, 13, 2, 1)
data = matrix(tmp, byrow=TRUE, ncol=5)
# g chart with cdf (trimming) method.
# Print LCL, CL, UCL.
result = racc(data, gamma=0.9, type="g", location=1)
print(result)
# Summary of a control chart
summary(result)
plot(result, cex.text=0.8)
# h chart with MM (truncated geometric) method.
racc(data, gamma=0.9, type="h", location=1, gEstimator="MM")
# ===============================
# Example 2: g and h charts (unbalanced data)
# -------------------------------
x1 = c(11, 2, 8, 2, 4)
x2 = c(1, 1, 11, 2, 1)
x3 = c(1, 7, 1)
x4 = c(5, 1, 3, 6, 5)
x5 = c(13, 2, 3, 3)
x6 = c(3, 2, 6, 1, 5)
x7 = c(2, 2, 8, 3, 1)
x8 = c(1, 3, 4, 6, 5)
x9 = c(2, 8, 1, 1, 4)
data = list(x1, x2, x3, x4, x5, x6, x7, x8, x9)
result = racc(data, gamma=0.9, type="g", location=1, gEstimator="cdf", nk=5)
summary(result)
plot(result)
# ===============================
# Example 3: t charts
# -------------------------------
x = c(0.35, 0.92, 0.59, 4.28, 0.21, 0.79, 1.75, 0.07, 3.3,
1.7, 0.33, 0.97, 0.96, 2.23, 0.88, 0.37, 1.3, 0.4, 0.19, 1.59)
# Exponential t chart
result = racc(x, type="t", tModel="E")
summary(result)
plot(result, cex.text=0.8)
text(10, 6, labels="Robust exponential t chart" )
# Weibull t chart
result = racc(x, type="t", tModel="W")
summary(result)
plot(result, cex.text=0.8)
text(10, 5.5, labels="Robust Weibull t chart" )