Hodges-Lehmann {rQCC} | R Documentation |
Hodges-Lehmann estimator
Description
Calculates the Hodges-Lehmann estimator.
Usage
HL(x, estimator = c("HL1", "HL2", "HL3"), na.rm = FALSE)
Arguments
x |
a numeric vector of observations. |
estimator |
a character string specifying the estimator, must be
one of |
na.rm |
a logical value indicating whether NA values should be stripped before the computation proceeds. |
Details
HL
computes the Hodges-Lehmann estimators (one of "HL1"
, "HL2"
, "HL3"
).
The Hodges-Lehmann (HL1) is defined as
\mathrm{HL1} = \mathop{\mathrm{median}}_{i<j} \Big( \frac{X_i+X_j}{2} \Big)
where i,j=1,2,\ldots,n
.
The Hodges-Lehmann (HL2) is defined as
\mathrm{HL2} = \mathop{\mathrm{median}}_{i \le j}\Big(\frac{X_i+X_j}{2} \Big).
The Hodges-Lehmann (HL3) is defined as
\mathrm{HL3} = \mathop{\mathrm{median}}_{\forall(i,j)} \Big( \frac{X_i+X_j}{2} \Big).
Value
It returns a numeric value.
Author(s)
Chanseok Park and Min Wang
References
Park, C., H. Kim, and M. Wang (2022).
Investigation of finite-sample properties of robust location and scale estimators.
Communications in Statistics - Simulation and Computation,
51, 2619-2645.
doi: 10.1080/03610918.2019.1699114
Hodges, J. L. and E. L. Lehmann (1963). Estimates of location based on rank tests. Annals of Mathematical Statistics, 34, 598–611.
See Also
mean{base} for calculating sample mean and median{stats} for calculating sample median.
finite.breakdown
{rQCC} for calculating the finite-sample breakdown point.
Examples
x = c(0:10, 50)
HL(x, estimator="HL2")