dataPBK {rPBK} | R Documentation |
Create a list giving data and parameters to use in the model inference.
Description
Create a list giving data and parameters to use in the model inference.
Usage
dataPBK(object, ...)
## S3 method for class 'data.frame'
dataPBK(
object,
col_time = NA,
col_replicate = NA,
col_exposure = NA,
col_compartment = NA,
time_accumulation = NA,
ku_nest = NA,
ke_nest = NA,
k_nest = NA,
...
)
nested_model(object)
## S3 method for class 'stanPBKdata'
nested_model(object)
Arguments
object |
An object of class |
... |
Further arguments to be passed to generic methods |
col_time |
Column name of the time column |
col_replicate |
Column name of the replicate column |
col_exposure |
Column name of the exposure column. |
col_compartment |
Column names of the compartment column. If several columns, give a vector with the column names. |
time_accumulation |
A scalar giving accumulation time. |
ku_nest |
Vector of binary (0 or 1) to select the uptake route. Use the
nested_model() on the |
ke_nest |
Vector of binary (0 or 1) to select the excretion route. Use the
nested_model() on the |
k_nest |
Matrix of binary (0 or 1) to select interaction routes. Use the
nested_model() on the |
Value
A list
with data and parameters require for model inference.
Examples
# (1) load data file
data("dataCompartment4")
# (2) prepare data set
dataPBK_C4 <- dataPBK(
object = dataCompartment4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7)
# (1) load data file
data("dataCompartment4")
# (2) prepare data set
dataPBK_C4 <- dataPBK(
object = dataCompartment4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7)
# (3) check nesting
nested_model(dataPBK_C4)
# (2bis)
dataPBK_C42 <- dataPBK(
object = dataCompartment4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7,
ku_nest = c(1,1,1,1), # No Change here
ke_nest = c(1,1,1,1), # No Change here
k_nest = matrix(c(
c(0,1,1,1),
c(0,0,1,1),
c(0,0,0,0),
c(0,0,0,0)),
ncol=4,nrow=4,byrow=TRUE) # Remove
)
# (3bis) re-checking nesting
nested_model(dataPBK_C42)