ProjectedGD {rMultiNet} | R Documentation |
Title
Description
Title
Usage
ProjectedGD(
Ini_list,
cmax = 1,
eta_outer = 0.001,
tmax_outer = 10,
p_type = "logit",
rd = "Non",
show = TRUE,
sgma = 1,
sample_size = 500
)
Arguments
Ini_list |
the output of function InitializationLSM |
cmax |
the upper limits for adding the coefficient constraint |
eta_outer |
the learning rate in gradient descent |
tmax_outer |
the number of iterations in gradient descent |
p_type |
the type of link function (‘logit’, ‘probit’ or ‘poisson’ ) |
rd |
whether to use stochastic sampling (‘rand’ or ‘Non’ ) |
show |
if print the ietation process |
sgma |
the link function parameter |
sample_size |
the size of sampling |
Value
the embedding results of nodes and layers
Examples
gen_list = GenerateMMLSM(200,3,5,2,d=NULL)
Ini_list = InitializationLSM(gen_list,200,3,2)
[Package rMultiNet version 0.1 Index]