fpgrowth {rCBA} | R Documentation |
FP-Growth
Description
FP-Growth algorithm - Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. SIGMOD Rec. 29, 2 (2000) <doi:10.1145/335191.335372>
Usage
fpgrowth(train, support = 0.01, confidence = 1, maxLength = 5,
consequent = NULL, verbose = TRUE, parallel = TRUE)
Arguments
train |
|
support |
minimum support |
confidence |
minimum confidence |
maxLength |
maximum length |
consequent |
filter consequent - column name with consequent/target class |
verbose |
verbose indicator |
parallel |
parallel indicator |
Examples
library("rCBA")
data("iris")
train <- sapply(iris,as.factor)
train <- data.frame(train, check.names=FALSE)
txns <- as(train,"transactions")
rules = rCBA::fpgrowth(txns, support=0.03, confidence=0.03, maxLength=2, consequent="Species",
parallel=FALSE)
predictions <- rCBA::classification(train,rules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)
prunedRules <- rCBA::pruning(train, rules, method="m2cba", parallel=FALSE)
predictions <- rCBA::classification(train, prunedRules)
table(predictions)
sum(as.character(train$Species)==as.character(predictions),na.rm=TRUE)/length(predictions)
[Package rCBA version 0.4.3 Index]