rAverage {rAverage} | R Documentation |
Parameter estimation for the averaging model of Information Integration Theory
Description
The R-Average package implements a method to identify the parameters of the Averagingcmodel of Information Integration Theory (Anderson, 1981), following the spirit of the so-called "principle of parsimony".
Name of the parameters:
s0,w0
: initial state values of the Averaging Model.
s(k,j)
: scale value of the j
-th level of k
-th factor.
w(k,j)
: weight value of the j
-th level of k
-th factor.
Details
Package: | rAverage |
Type: | Package |
Version: | 0.5-8 |
Date: | 2017-07-29 |
License: | GNU (version 2 or later) |
Functions of the R-Average package:
rav
: estimates the parameters for averaging models.
fitted
: extracts the predicted values of the best model from a rav
object.
residuals
: extracts the residuals from a rav
object.
coefficients
: extracts the parameters from a rav
object.
outlier.replace
: given an estimated averaging model with the rav
function, it
detects and replace outliers from the residual matrix.
rav.indices
: given a set of parameters s
and w
and a matrix of observed
data, it calculates the fit indices for the averaging model.
datgen
: returns the responses R
for averaging models
given the set of parameters s
and w
.
pargen
: generates pseudorandom parameters for the averaging model.
rav.grid
: generates an empty matrix in 'rav' format.
rav.single
: single subjects analysis over an aggregated data matrix.
rav2file
: store the reesults of rav
into a text file.
Author(s)
Supervisor: Prof. Giulio Vidotto giulio.vidotto@unipd.it
University of Padova, Department of General Psychology
QPLab: Quantitative Psychology Laboratory
version 0.0:
Marco Vicentini marco.vicentini@gmail.com
version 0.1 and following:
Stefano Noventa stefano.noventa@univr.it
Davide Massidda davide.massidda@gmail.com
References
Akaike, H. (1976). Canonical correlation analysis of time series and the use of an information criterion. In: R. K. Mehra & D. G. Lainotis (Eds.), System identification: Advances and case studies (pp. 52-107). New York: Academic Press. doi: 10.1016/S0076-5392(08)60869-3
Anderson, N. H. (1981). Foundations of Information Integration Theory. New York: Academic Press. doi: 10.2307/1422202
Anderson, N. H. (1982). Methods of Information Integration Theory. New York: Academic Press.
Anderson, N. H. (1991). Contributions to information integration theory: volume 1: cognition. Lawrence Erlbaum Associates, Hillsdale, New Jersey. doi: 10.2307/1422884
Anderson, N. H. (2007). Comment on article of Vidotto and Vicentini. Teorie & Modelli, Vol. 12 (1-2), 223-224.
Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. Journal Scientific Computing, 16, 1190-1208. doi: 10.1137/0916069
Kuha, J. (2004). AIC and BIC: Comparisons of Assumptions and Performance. Sociological Methods & Research, 33 (2), 188-229.
Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7, 308-313. doi: 10.1093/comjnl/7.4.308
Vidotto, G., Massidda, D., & Noventa, S. (2010). Averaging models: parameters estimation with the R-Average procedure. Psicologica, 31, 461-475. URL https://www.uv.es/psicologica/articulos3FM.10/3Vidotto.pdf
Vidotto, G. & Vicentini, M. (2007). A general method for parameter estimation of averaging models. Teorie & Modelli, Vol. 12 (1-2), 211-221.
See Also
rav
,
datgen
,
pargen
,
rav.indices
,
fmdata1
,
pasta
,
optim