calcScpValues {rADA} | R Documentation |
Calculate screening cut point values for scp()
Description
This function calculates the values needed for the output of the scp() data.frame
Usage
calcScpValues(
assay.values,
conf.level = 0.95,
distrib = c("nonparametric", "normal"),
transf.method = c("log10", "ln")
)
Arguments
assay.values |
List of selected values from the assay data.frame such as selected values from assayMelt() |
conf.level |
Decimal describing level of confidence to be used for confidence interval calculation. Defaults to 0.95 |
distrib |
Distribution selection to determine the cut point calculation. Two options: 'nonparametric' or 'normal' |
transf.method |
Transformation method used. The inverse will be calculated as part of the output. |
Value
A data.frame cotaining the values: "mean", "sd", "distrib", "cp", "mean.conf.int1", "mean.conf.int2", "cp.conf.int1", "cp.conf.int2"
Author(s)
Emma Gail
Examples
assay.df.melted <- assayMelt(assay.df = lognormAssay, exp.name = 'Experiment1')
assay.values <- assay.df.melted[assay.df.melted$DayOperator == 'D1Op1',]$value
#This function assumes that the data has already been transformed.
scp.df <- calcScpValues(assay.values = log10(assay.values), distrib = 'normal',
transf.method = 'log10')
[Package rADA version 1.1.9 Index]