esize_m_boot {r4lineups}R Documentation

Bootstrapped Effective Size

Description

Base function for computing bootstrapped effective size

Usage

esize_m_boot(lineup_vec, d, k)

Arguments

lineup_vec

A vector of lineup choices

d

Indices for bootstrap resampling

k

A vector indexing number of members in each lineup pair. Must be specified by user (scalar).

Details

Function to call when bootstrap resampling using boot function (in package 'boot')

Value

If printarg=FALSE, provides only Malpass's priginal calculation of effective size

References

Davison, A.C. & Hinkley, D.V. (1997). Bootstrap methods and their application. Cambridge University Press.

Malpass, R. S. (1981). Effective size and defendant bias in eyewitness identification lineups. Law and Human Behavior, 5(4), 299-309.

Malpass, R. S., Tredoux, C., & McQuiston-Surrett, D. (2007). Lineup construction and lineup fairness. In R. Lindsay, D. F. Ross, J. D. Read, & M. P. Toglia (Eds.), Handbook of Eyewitness Psychology, Vol. 2: Memory for people (pp. 155-178). Mahwah, NJ: Lawrence Erlbaum Associates.

Tredoux, C. G. (1998). Statistical inference on measures of lineup fairness. Law and Human Behavior, 22(2), 217-237.

Tredoux, C. (1999). Statistical considerations when determining measures of lineup size and lineup bias. Applied Cognitive Psychology, 13, S9-S26.

Wells, G. L.,Leippe, M. R., & Ostrom, T. M. (1979). Guidelines for empirically assessing the fairness of a lineup. Law and Human Behavior, 3(4), 285-293.

See Also

boot: https://cran.r-project.org/web/packages/boot/boot.pdf

Examples

#Data:
lineup_vec <- round(runif(100, 1, 6))

#Get boot object:
bootobject <- boot::boot(lineup_vec, esize_m_boot, k = 6, R=1000)
bootobject

#To get confidence intervals:
cis <- boot::boot.ci(bootobject, conf = 0.95, type = "all")


[Package r4lineups version 0.1.1 Index]