esize_m_boot {r4lineups} | R Documentation |
Bootstrapped Effective Size
Description
Base function for computing bootstrapped effective size
Usage
esize_m_boot(lineup_vec, d, k)
Arguments
lineup_vec |
A vector of lineup choices |
d |
Indices for bootstrap resampling |
k |
A vector indexing number of members in each lineup pair. Must be specified by user (scalar). |
Details
Function to call when bootstrap resampling using boot function (in package 'boot')
Value
If printarg=FALSE, provides only Malpass's priginal calculation of effective size
References
Davison, A.C. & Hinkley, D.V. (1997). Bootstrap methods and their application. Cambridge University Press.
Malpass, R. S. (1981). Effective size and defendant bias in eyewitness identification lineups. Law and Human Behavior, 5(4), 299-309.
Malpass, R. S., Tredoux, C., & McQuiston-Surrett, D. (2007). Lineup construction and lineup fairness. In R. Lindsay, D. F. Ross, J. D. Read, & M. P. Toglia (Eds.), Handbook of Eyewitness Psychology, Vol. 2: Memory for people (pp. 155-178). Mahwah, NJ: Lawrence Erlbaum Associates.
Tredoux, C. G. (1998). Statistical inference on measures of lineup fairness. Law and Human Behavior, 22(2), 217-237.
Tredoux, C. (1999). Statistical considerations when determining measures of lineup size and lineup bias. Applied Cognitive Psychology, 13, S9-S26.
Wells, G. L.,Leippe, M. R., & Ostrom, T. M. (1979). Guidelines for empirically assessing the fairness of a lineup. Law and Human Behavior, 3(4), 285-293.
See Also
boot
: https://cran.r-project.org/web/packages/boot/boot.pdf
Examples
#Data:
lineup_vec <- round(runif(100, 1, 6))
#Get boot object:
bootobject <- boot::boot(lineup_vec, esize_m_boot, k = 6, R=1000)
bootobject
#To get confidence intervals:
cis <- boot::boot.ci(bootobject, conf = 0.95, type = "all")