nll {quickNmix} | R Documentation |
Negative Log Likelihood
Description
Computes the negative log likelihood function for the open population asymptotic N-mixtures model.
Usage
nll(
par,
nit,
K,
l_s_c = NULL,
g_s_c = NULL,
g_t_c = NULL,
o_s_c = NULL,
o_t_c = NULL,
p_s_c = NULL,
p_t_c = NULL,
SMALL_a_CORRECTION = FALSE,
VERBOSE = FALSE,
outfile = NULL
)
Arguments
par |
Vector of parameter values: c(log(lambda), log(gamma), logit(omega), logit(pdet)). Note that the parameter vector will need to be longer if covariate values are supplied. |
nit |
Matrix of counts data. Rows represent sites, columns represent sampling occasions. Note that if the data is a vector, then it will be converted to a matrix with a single row. |
K |
Upper bound on summations in the likelihood function. K should be chosen large enough that the negative log likelihood function is stable (unchanging as K increases). |
l_s_c |
List of lambda site covariates, Default: NULL |
g_s_c |
List of gamma site covariates, Default: NULL |
g_t_c |
List of gamma time covariates, Default: NULL |
o_s_c |
List of omega site covariates, Default: NULL |
o_t_c |
List of omega time covariates, Default: NULL |
p_s_c |
List of pdet site covariates, Default: NULL |
p_t_c |
List of pdet time covariates, Default: NULL |
SMALL_a_CORRECTION |
If TRUE will apply the small a correction when calculating the transition probability matrix, Default: FALSE |
VERBOSE |
If TRUE, will print additional information, Default: FALSE |
outfile |
Location of csv file to write/append parameter values, Default: NULL |
Details
DETAILS
Value
Returns the negative log likelihood function evaluated at par.
Examples
if (interactive()) {
nit = matrix(c(1,1,0,1,1), nrow=1) # observations for 1 site, 5 sampling occassions
par = c(1,1,1,0) # parameter values at which to calculate the negative log likelihood (nll)
nll(par, nit, K=10) # nll with K=10
nll(par, nit, K=10, SMALL_a_CORRECTION=TRUE) # nll with small a correction
}