NewInput.OJN {queueing} | R Documentation |
Define the inputs of an Open Jackson Network
Description
Define the inputs of an Open Jackson Network
Usage
NewInput.OJN(prob=NULL, ...)
NewInput2.OJN(prob=NULL, nodes)
NewInput3.OJN(vLambda, numNodes, vType, vVisit, vService, vChannel)
Arguments
prob |
It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio to node i (the visit ratio values doesn't need to be probabilities, that is, a value greater than 1 can be used here. See the examples) |
... |
a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class |
nodes |
A list of nodes of i_MM1, i_MMC or i_MMInf class |
vLambda |
Vector with the arrivals rates to each node |
numNodes |
Number of nodes |
vType |
A vector with the type of server: "Q" for a queueing node, "D" for a delay node |
vVisit |
A vector with the visit ratios |
vService |
A vector with the services time of each node |
vChannel |
A vector with the number of channels of the node. The type of the server has to be "Q" to be inspected |
Details
Define the inputs of an Open Jackson Network. For a operational use, NewInput3.OJN is recommended. For a more academic use, NewInput.OJN or NewInput2.OJN is recommended. Please, note that the different ways to create the inputs for a Open Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.
References
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
Quantitative System Performance: Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey
See Also
Examples
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
## Using function NewInput2
## Not run:
ojn1 <- NewInput2.OJN(prob, list(n1, n2, n3, n4))
## End(Not run)
## Using visit ratios. Values taken from [Lazowska84], pag. 113.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(lambda=0.2, mu=1/0.005)
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 <- NewInput.MM1(lambda=0.2, mu=1/0.030)
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(lambda=0.2, mu=1/0.027)
## In this example, to have the throughput per node, the visit ratios has to be given in this form.
## Please, don't use in the closed Jackson Network
visit <- c(121, 70, 50)
net <- NewInput.OJN(visit, cpu, disk1, disk2)
## Using NewInput3
vLambda <- c(0.2, 0.2, 0.2)
vService <- c(0.005, 0.030, 0.027)
numNodes <- 3
vType <- c("Q", "Q", "Q")
vChannel <- c(1, 1, 1)
net2 <- NewInput3.OJN(vLambda, numNodes, vType, visit, vService, vChannel)