k_weibull {quaxnat}R Documentation

Dispersal kernels for Weibull distance distributions

Description

k_weibull computes the value, multiplied by NN, of the dispersal kernel from Tufto et al. (1997) based on seeds having a distance with a Weibull distribution from their source.

Usage

k_weibull(x, par, N = 1, d = NCOL(x))

Arguments

x

Numeric matrix of positions xx relative to the seed source, or vector of distances x\left\|{x}\right\| to the seed source.

par

Numeric vector with two elements representing the log-transformed scale and shape parameters aa and bb of the distance distribution.

N

The multiplier NN.

d

The spatial dimension.

Details

The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source, is here given by

k(x)=bΓ(d/2)2πd/2abxbde(x/a)b,k(x)={b\Gamma (d/2) \over 2\pi ^{d/2}a^{b}}\left\|{x}\right\|^{b-d} e^{-(\left\|{x}\right\|/a)^{b}},

which corresponds to a probability density of the distance given by

p(r)=babrb1e(r/a)b,p(r)={b \over a^{b}}r^{b-1}e^{-(r/a)^{b}},

where dd is the spatial dimension, \left\|{\,}\right\| denotes the Euclidean norm and the normalizing constants involve the gamma function; see Tufto et al. (1997) for the planar case. Thus, the distance is assumed to have the Weibull distribution with scale parameter aa and shape parameter bb. Equivalently, the bbth power of the distance has an exponential distribution with scale parameter aba^{b}.

Consequently, if and only if b<1b<1, the distance distribution has a heavier tail than an exponential distribution, although with tail probabilities still decreasing faster than any power law; it is a fat-tailed distribution in the sense of Kot et al. (1996). The kernel coincides with a Gaussian kernel in the special case b=d=2b=d=2.

Value

Numeric vector of function values k(x)k(x) multiplied by NN.

References

Tufto, J., Engen, S., Hindar, K. (1997). Stochastic dispersal processes in plant populations, Theoretical Population Biology 52(1), 16–26. doi:10.1006/tpbi.1997.1306

Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork, V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology 13, 937–954. doi:10.1111/j.1365-294X.2004.02100.x

Kot, M., Lewis, M.A., van den Driessche, P. (1996). Dispersal Data and the Spread of Invading Organisms. Ecology 77(7), 2027–2042. doi:10.2307/2265698

Nathan, R., Klein, E., Robledo‐Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution, 186–210. doi:10.1093/acprof:oso/9780199608898.003.0015

Examples

k_weibull(2:5, par=c(0,0), d=2)

[Package quaxnat version 1.0.0 Index]