| k_power {quaxnat} | R Documentation |
Power-law dispersal kernels
Description
k_power computes the value, multiplied by N, of a dispersal kernel
that follows a power law of a constant a plus the distance.
Usage
k_power(x, par, N = 1, d = NCOL(x))
Arguments
x |
Numeric matrix of positions |
par |
Numeric vector with two elements representing the
log-transformed parameters |
N |
The multiplier |
d |
The spatial dimension. |
Details
The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source, is here given by
k(x)={\Gamma (d/2) \over 2\pi ^{d/2}a^{d}B(d,b)}
(1+{\left\|{x}\right\| \over a})^{-(b+d)},
which corresponds to a probability density of the distance given by
p(r)={1 \over a^{d}B(d,b)}r^{d-1}(1+{r \over a})^{-(b+d)},
where d is the spatial dimension, \left\|{\,}\right\|
denotes the Euclidean norm and the normalizing constants involve the
beta and gamma functions; see Nathan
et al. (2012) for the planar case (with b replaced by b-d).
This means the distance is da \over b times a random variable having
an F distribution with 2d and 2b degrees
of freedom. This is a fat-tailed distribution for all choices of the
parameter b.
Value
Numeric vector of function values k(x) multiplied by N.
References
Nathan, R., Klein, E., Robledo‐Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution, 186–210. doi:10.1093/acprof:oso/9780199608898.003.0015
Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork, V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology 13, 937–954. doi:10.1111/j.1365-294X.2004.02100.x
Examples
k_power(2:5, par=c(0,0), d=2)