| k_exponential_power {quaxnat} | R Documentation |
Dispersal kernels from exponential power family
Description
k_exponential_power computes the value, multiplied by N, of a
dispersal kernel from the exponential power family that includes, as
special cases, Gaussian kernels and kernels that follow an exponential
function of the distance.
Usage
k_exponential_power(x, par, N = 1, d = NCOL(x))
Arguments
x |
Numeric matrix of positions |
par |
Numeric vector with two elements representing the
log-transformed scale and shape parameters |
N |
The multiplier |
d |
The spatial dimension. |
Details
The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source, is here given by
k(x)={b\Gamma (d/2) \over 2\pi ^{d/2}a^{d}\Gamma (d/b)}
e^{-(\left\|{x}\right\|/a)^{b}},
which corresponds to a probability density of the distance given by
p(r)={b \over a^{d}\Gamma (d/b)}r^{d-1}e^{-(r/a)^{b}},
where d is the spatial dimension, \left\|{\,}\right\|
denotes the Euclidean norm and the normalizing constants involve the
gamma function; see Bateman (1947), Clark et al.
(1998), Austerlitz et al. (2004), Nathan et al. (2012) for the planar
case. This means the bth power of the distance has a
gamma distribution with shape parameter
d/b and scale parameter a^{b}.
The kernel has its maximum at zero and represents a rather flexible family
that includes, for b=2 the classical Gaussian kernels and for
b=1, kernels decreasing exponentially with the distance. For
b<1 the distance distribution is fat-tailed in the sense of Kot et
al. (1996). Such kernels have consequently been applied in a number of
theoretical studies that address dispersal (Ribbens et al. 1994, Bullock
et al. 2017).
Value
Numeric vector of function values k(x) multiplied by N.
References
Bateman, A. (1947). Contamination in seed crops: III. relation with isolation distance. Heredity 1, 303–336. doi:10.1038/hdy.1947.20
Kot, M., Lewis, M.A., van den Driessche, P. (1996). Dispersal Data and the Spread of Invading Organisms. Ecology 77(7), 2027–2042. doi:10.2307/2265698
Ribbens, E., Silander Jr, J.A., Pacala, S.W. (1994). Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75, 1794–1806. doi:10.2307/1939638
Clark, J.S., Macklin, E., Wood, L. (1998). Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecological Monographs 68(2), 213–235. doi:10.2307/2657201
Clark, J.S. (1998). Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. The American Naturalist 152(2), 204–224. doi:10.1086/286162
Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork, V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology 13, 937–954. doi:10.1111/j.1365-294X.2004.02100.x
Bullock, J. M., Mallada González, L., Tamme, R., Götzenberger, L., White, S.M., Pärtel, M., Hooftman, D.A. (2017). A synthesis of empirical plant dispersal kernels. Journal of Ecology 105, 6–19. doi:10.1111/1365-2745.12666
Nathan, R., Klein, E., Robledo‐Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution, 186–210. doi:10.1093/acprof:oso/9780199608898.003.0015
Examples
k_exponential_power(2:5, par=c(0,0), d=2)