crossqreg {quantilogram} | R Documentation |
Cross-Quantilogram
Description
Returns the cross-quantilogram
Usage
crossqreg(DATA1, DATA2, vecA, k)
Arguments
DATA1 |
An input matrix (T x p1) |
DATA2 |
An input matrix (T x p2) |
vecA |
A pair of two probability values at which sample quantiles are estimated |
k |
A lag order (integer) |
Details
This function obtains the cross-quantilogram at the k lag order.
Value
Cross-Quantilogram
Author(s)
Heejoon Han, Oliver Linton, Tatsushi Oka and Yoon-Jae Whang
References
Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series." Journal of Econometrics, 193(1), 251-270.
Koenker, R., and Bassett Jr, G. (1978). "Regression quantiles." Econometrica, 46(1), 33-50.
Examples
## data source
data(sys.risk)
## sample size
T = nrow(sys.risk)
## matrix for quantile regressions
## - 1st column: dependent variables
## - the rest: regressors or predictors
D1 = cbind(sys.risk[2:T,"Market"], sys.risk[1:(T-1),"Market"])
D2 = cbind(sys.risk[2:T,"JPM"], sys.risk[1:(T-1),"JPM"])
## probability levels
vecA = c(0.1, 0.2)
## cross-quantilogram with the lag of 5, after quantile regression
crossqreg(D1, D2, vecA, 5)
[Package quantilogram version 2.2.1 Index]