textstat_simil {quanteda.textstats} | R Documentation |
Similarity and distance computation between documents or features
Description
These functions compute matrixes of distances and similarities between
documents or features from a dfm()
and return a matrix of
similarities or distances in a sparse format. These methods are fast
and robust because they operate directly on the sparse dfm objects.
The output can easily be coerced to an ordinary matrix, a data.frame of
pairwise comparisons, or a dist format.
Usage
textstat_simil(
x,
y = NULL,
selection = NULL,
margin = c("documents", "features"),
method = c("correlation", "cosine", "jaccard", "ejaccard", "dice", "edice", "hamann",
"simple matching"),
min_simil = NULL,
...
)
textstat_dist(
x,
y = NULL,
selection = NULL,
margin = c("documents", "features"),
method = c("euclidean", "manhattan", "maximum", "canberra", "minkowski"),
p = 2,
...
)
Arguments
x , y |
a dfm objects; |
selection |
(deprecated - use |
margin |
identifies the margin of the dfm on which similarity or
difference will be computed: |
method |
character; the method identifying the similarity or distance measure to be used; see Details. |
min_simil |
numeric; a threshold for the similarity values below which similarity values will not be returned |
... |
unused |
p |
The power of the Minkowski distance. |
Details
textstat_simil
options are: "correlation"
(default),
"cosine"
, "jaccard"
, "ejaccard"
, "dice"
,
"edice"
, "simple matching"
, and "hamann"
.
textstat_dist
options are: "euclidean"
(default),
"manhattan"
, "maximum"
, "canberra"
,
and "minkowski"
.
Value
A sparse matrix from the Matrix package that will be symmetric
unless y
is specified.
Conversion to other data types
The output objects from textstat_simil()
and textstat_dist()
can be
transformed easily into a list format using
as.list()
, which returns a list for each unique
element of the second of the pairs, a data.frame using
as.data.frame()
, which returns pairwise
scores, as.dist()
for a dist object,
or as.matrix()
to convert it into an ordinary matrix.
Note
If you want to compute similarity on a "normalized" dfm object
(controlling for variable document lengths, for methods such as correlation
for which different document lengths matter), then wrap the input dfm in
[dfm_weight](x, "prop")
.
See Also
as.list.textstat_proxy()
, as.data.frame.textstat_proxy()
,
stats::as.dist()
Examples
# similarities for documents
library("quanteda")
dfmat <- corpus_subset(data_corpus_inaugural, Year > 2000) %>%
tokens(remove_punct = TRUE) %>%
tokens_remove(stopwords("english")) %>%
dfm()
(tstat1 <- textstat_simil(dfmat, method = "cosine", margin = "documents"))
as.matrix(tstat1)
as.list(tstat1)
as.list(tstat1, diag = TRUE)
# min_simil
(tstat2 <- textstat_simil(dfmat, method = "cosine", margin = "documents", min_simil = 0.6))
as.matrix(tstat2)
# similarities for for specific documents
textstat_simil(dfmat, dfmat["2017-Trump", ], margin = "documents")
textstat_simil(dfmat, dfmat["2017-Trump", ], method = "cosine", margin = "documents")
textstat_simil(dfmat, dfmat[c("2009-Obama", "2013-Obama"), ], margin = "documents")
# compute some term similarities
tstat3 <- textstat_simil(dfmat, dfmat[, c("fair", "health", "terror")], method = "cosine",
margin = "features")
head(as.matrix(tstat3), 10)
as.list(tstat3, n = 6)
# distances for documents
(tstat4 <- textstat_dist(dfmat, margin = "documents"))
as.matrix(tstat4)
as.list(tstat4)
as.dist(tstat4)
# distances for specific documents
textstat_dist(dfmat, dfmat["2017-Trump", ], margin = "documents")
(tstat5 <- textstat_dist(dfmat, dfmat[c("2009-Obama" , "2013-Obama"), ], margin = "documents"))
as.matrix(tstat5)
as.list(tstat5)
## Not run:
# plot a dendrogram after converting the object into distances
plot(hclust(as.dist(tstat4)))
## End(Not run)