bsplines {quantCurves} | R Documentation |
Cubic Penalized B-splines quantile regression
Description
Cubic Penalized B-splines quantile regression
Usage
bsplines(
x,
y,
lambdas,
d = 3,
cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
leg = TRUE,
axes.lab = NULL
)
Arguments
x |
the explanatory variable - numeric |
y |
the response variable - numeric |
lambdas |
tunes the tradeoff between the goodness of fit and the regularity of the spline - numeric value or numeric vector |
d |
differentiation order - 1, 2 or 3. Default is set to d=3. |
cents |
numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97)). |
leg |
Boolean. Should the legend be desplayed (TRUE) or not (FALSE). |
axes.lab |
NULL or c("Nom_axe_X, Nom_axe_Y"). |
Value
Plots the curves at centiles selected and returns an object of class gcrq.
Examples
#create a sample data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200,3000,4500,4300,4900,4350,3700,4000)
ages<-c(30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,36,
37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42)
bsplines(ages,weights,lambdas=50)
[Package quantCurves version 1.0.0 Index]