quantV {qualV} | R Documentation |
Quantitative Validation Methods
Description
Different methods for calculating the difference between two vectors.
Usage
generalME(o, p,
ignore = c("raw", "centered", "scaled", "ordered"),
geometry = c("real", "logarithmic", "geometric", "ordinal"),
measure = c("mad", "var", "sd"),
type = c("dissimilarity", "normalized", "similarity",
"reference", "formula", "name", "function"),
method = NULL)
MAE(o, p, type = "dissimilarity")
MAPE(o, p, type = "dissimilarity")
MSE(o, p, type = "dissimilarity")
RMSE(o, p, type = "dissimilarity")
CMAE(o, p, type = "dissimilarity")
CMSE(o, p, type = "dissimilarity")
RCMSE(o, p, type = "dissimilarity")
SMAE(o, p, type = "dissimilarity")
SMSE(o, p, type = "dissimilarity")
RSMSE(o, p, type = "dissimilarity")
MALE(o, p, type = "dissimilarity")
MAGE(o, p, type = "dissimilarity")
RMSLE(o, p, type = "dissimilarity")
RMSGE(o, p, type = "dissimilarity")
SMALE(o, p, type = "dissimilarity")
SMAGE(o, p, type = "dissimilarity")
SMSLE(o, p, type = "dissimilarity")
RSMSLE(o, p, type = "dissimilarity")
RSMSGE(o, p, type = "dissimilarity")
MAOE(o, p, type = "dissimilarity")
MSOE(o, p, type = "dissimilarity")
RMSOE(o, p, type = "dissimilarity")
Arguments
o |
vector of observed values |
p |
vector of corresponding predicted values |
type |
one of |
ignore |
specifies which aspects should be ignored: |
geometry |
indicating the geometry to be used for the data and
the output, |
measure |
indicates how distances should be measured: as mean absolute distances like in MAD, as squared distances like in a variance, or as the root of mean squared distances like in sd. |
method |
optionally the function to be used can specified directly as a function or as a string. |
Details
These comparison criteria are designed for a semiquantitative
comparison of observed values o
with predicted values
p
to validate the performance of the prediction.
The general naming convention follows the grammar scheme
[R][C|S]M[S|A][L|G|O]E
corresponding to
[Root] [Centered | Scaled] Mean [Squared | Absolute]
[Logarithmic, Geometric, Ordinal] Error
- Root
is used together with squared errors to indicate, that a root is applied to the mean.
- Centered
indicates that an additive constant is allowed.
- Scaled
indicates that a scaling of the predictive sequence is allowed. Scaled implies centered for real scale.
- Squared
indicates that squared error is used.
- Absolute
indicates that absolute error is used.
- Logarithmic
indicates that the error is calculated based on the logarithms of the values. This is useful for data on a relative scale.
- Geometric
indicates that the result is to be understood as a factor, similar to a geometric mean.
- Ordinal
indicates that only the order of the observations is taken into account by analyzing the data by ranks scaled to the interval [0, 1].
The mean errors for squared error measures are based on the number of degrees of freedom of the residuals.
Value
generalME |
selects the best deviance measure according to the description given in the parameters. It has the two additional possibilities of name and function in the type parameter. |
MAE |
mean absolute error |
MAPE |
mean absolute percentage error |
MSE |
mean squared error |
RMSE |
root mean squared error |
CMAE |
centered mean absolute error |
CMSE |
centered mean squared error |
RCMSE |
root centered mean squared error |
SMAE |
scaled mean absolute error |
SMSE |
scaled mean squared error |
RSMSE |
root scaled mean squared error |
MALE |
mean absolute logarithmic error |
MAGE |
mean absolute geometric error |
MSLE |
mean squared logarithmic error |
MSGE |
mean squared geometric error |
RMSLE |
root mean squared logarithmic error |
SMALE |
scaled mean absolute logarithmic error |
SMAGE |
scaled mean absolute relative error |
SMSLE |
scaled mean squared logarithmic error |
RSMSLE |
root scaled mean squared logarithmic error |
RSMSGE |
root scaled mean squared geometric error |
MAOE |
mean absolute ordinal error |
MSOE |
mean squared ordinal error |
RMSOE |
root mean squared ordinal error |
References
Mayer, D. G. and Butler, D. G. (1993) Statistical Validation. Ecological Modelling, 68, 21-32.
Jachner, S., van den Boogaart, K.G. and Petzoldt, T. (2007) Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualV), Journal of Statistical Software, 22(8), 1–30. doi:10.18637/jss.v022.i08.
See Also
Examples
data(phyto)
obsb <- na.omit(obs[match(sim$t, obs$t), ])
simb <- sim[na.omit(match(obs$t, sim$t)), ]
o <- obsb$y
p <- simb$y
generalME(o, p, ignore = "raw", geometry = "real")
MAE(o, p)
MAPE(o, p)
MSE(o, p)
RMSE(o, p)
CMAE(o, p)
CMSE(o, p)
RCMSE(o, p)
SMAE(o, p)
SMSE(o, p)
RSMSE(o, p)
MALE(o, p)
MAGE(o, p)
RMSLE(o, p)
RMSGE(o, p)
SMALE(o, p)
SMAGE(o, p)
SMSLE(o, p)
RSMSLE(o, p)
RSMSGE(o, p)
MAOE(o, p)
MSOE(o, p)
RMSOE(o, p)
MAE(o, p)
MAPE(o, p)
MSE(o, p, type = "s")
RMSE(o, p, type = "s")
CMAE(o, p, type = "s")
CMSE(o, p, type = "s")
RCMSE(o, p, type = "s")
SMAE(o, p, type = "s")
SMSE(o, p, type = "s")
RSMSE(o, p, type = "s")
MALE(o, p, type = "s")
MAGE(o, p, type = "s")
RMSLE(o, p, type = "s")
RMSGE(o, p, type = "s")
SMALE(o, p, type = "s")
SMAGE(o, p, type = "s")
SMSLE(o, p, type = "s")
RSMSLE(o, p, type = "s")
RSMSGE(o, p, type = "s")
MAOE(o, p, type = "s")
MSOE(o, p, type = "s")
RMSOE(o, p, type = "s")