varStep {qtlmt} | R Documentation |
Variable selection
Description
Add a variable, drop a variable, or select a subset of variables via variable selection that are optimal for multivariate analysis.
Usage
varAdd1(x, group, vin=NULL, scope=1:ncol(x), k=0)
varDrop1(x, group, vin=1:ncol(x), k=0)
varStep(x, group, scope, k, kf=k/2, direction=c("both",
"forward","backward"))
Arguments
x |
a data matrix/frame. Columns are variables to select from. |
group |
a grouping indicator of observations. |
vin |
which variables (i.e., columns of |
scope |
which variables (i.e., columns of |
k |
entry/stay value in backward stepwise. |
kf |
entry/stay value in forward stepwise. |
direction |
forward selection, backward elimination or both stepwise. |
Value
which variable to add (add1), which variable to drop (drop1), or a subset of variables in the final model (step).
See Also
Examples
data(etrait)
varAdd1(traits, group=mdat[,42], vin=10, scope=1:ncol(traits))
varStep(traits, group=mdat[,42], k=12, scope=1:ncol(traits),
direction="back")
[Package qtlmt version 0.1-6 Index]