| est_map {qtl2} | R Documentation |
Estimate genetic maps
Description
Uses a hidden Markov model to re-estimate the genetic map for an experimental cross, with possible allowance for genotyping errors.
Usage
est_map(
cross,
error_prob = 0.0001,
map_function = c("haldane", "kosambi", "c-f", "morgan"),
lowmem = FALSE,
maxit = 10000,
tol = 0.000001,
quiet = TRUE,
save_rf = FALSE,
cores = 1
)
Arguments
cross |
Object of class |
error_prob |
Assumed genotyping error probability |
map_function |
Character string indicating the map function to use to convert genetic distances to recombination fractions. |
lowmem |
If |
maxit |
Maximum number of iterations in EM algorithm. |
tol |
Tolerance for determining convergence |
quiet |
If |
save_rf |
If |
cores |
Number of CPU cores to use, for parallel calculations.
(If |
Details
The map is estimated assuming no crossover interference, but a map function (by default, Haldane's) is used to derive the genetic distances.
Value
A list of numeric vectors, with the estimated marker
locations (in cM). The location of the initial marker on each
chromosome is kept the same as in the input cross.
Examples
grav2 <- read_cross2(system.file("extdata", "grav2.zip", package="qtl2"))
gmap <- est_map(grav2, error_prob=0.002)