mqmplot.clusteredheatmap {qtl} | R Documentation |
Plot clustered heatmap of MQM scan on multiple phenotypes
Description
Plot the results from a MQM scan on multiple phenotypes.
Usage
mqmplot.clusteredheatmap(cross, mqmresult, directed=TRUE, legend=FALSE,
Colv=NA, scale="none", verbose=FALSE,
breaks = c(-100,-10,-3,0,3,10,100),
col = c("darkblue","blue","lightblue","yellow",
"orange","red"), ...)
Arguments
cross |
An object of class |
mqmresult |
Result object from mqmscanall, the object needs to be of class |
directed |
Take direction of QTLs into account (takes more time because of QTL direction calculations |
legend |
If TRUE, add a legend to the plot |
Colv |
Cluster only the Rows, the columns (Markers) should not be clustered |
scale |
character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default "none" |
verbose |
If TRUE, give verbose output. |
breaks |
Color break points for the LOD scores |
col |
Colors used between breaks |
... |
Additional arguments passed to |
Author(s)
Danny Arends danny.arends@gmail.com
See Also
The MQM tutorial: https://rqtl.org/tutorials/MQM-tour.pdf
-
MQM
- MQM description and references -
mqmscan
- Main MQM single trait analysis -
mqmscanall
- Parallellized traits analysis -
mqmaugment
- Augmentation routine for estimating missing data -
mqmautocofactors
- Set cofactors using marker density -
mqmsetcofactors
- Set cofactors at fixed locations -
mqmpermutation
- Estimate significance levels -
scanone
- Single QTL scanning
Examples
data(multitrait)
multitrait <- fill.geno(multitrait) # impute missing genotype data
result <- mqmscanall(multitrait, logtransform=TRUE)
cresults <- mqmplot.clusteredheatmap(multitrait,result)
groupclusteredheatmap(multitrait,cresults,10)