mqmpermutation {qtl} | R Documentation |
Estimate QTL LOD score significance using permutations or simulations
Description
Two randomization approaches to obtain estimates of QTL significance:
Random redistribution of traits (method='permutation')
Random redistribution of simulated trait values (method='simulation')
Calculations can be parallelized using the SNOW package.
Usage
mqmpermutation(cross, scanfunction=scanone, pheno.col=1, multicore=TRUE,
n.perm=10, file="MQM_output.txt",
n.cluster=1, method=c("permutation","simulation"),
cofactors=NULL, plot=FALSE, verbose=FALSE, ...)
Arguments
cross |
An object of class |
scanfunction |
Function to use when mappingQTL's (either scanone,cim or mqm) |
pheno.col |
Column number in the phenotype matrix which should be used as the phenotype. This can be a vector of integers. |
multicore |
Use multicore (if available) |
n.perm |
Number of permutations to perform (DEFAULT=10, should be 1000, or higher, for publications) |
file |
Name of the intermediate output file used |
n.cluster |
Number of child processes to split the job into |
method |
What kind permutation should occur: permutation or simulation |
cofactors |
cofactors, only used when scanfunction is mqm.
List of cofactors to be analysed in the QTL model. To set cofactors use |
.
plot |
If TRUE, make a plot |
verbose |
If TRUE, print tracing information |
... |
Parameters passed through to the
|
Details
Analysis of scanone
, cim
or
mqmscan
to scan for QTL in shuffled/randomized data. It is recommended to also install the snow
library.
The snow
library allows calculations to run on multiple cores or even scale it up to an entire cluster, thus speeding up calculation.
Value
Returns a mqmmulti object. this object is a list of scanone objects that can be plotted using plot.scanone(result[[trait]])
Author(s)
Ritsert C Jansen; Danny Arends; Pjotr Prins; Karl W Broman broman@wisc.edu
References
Bruno M. Tesson, Ritsert C. Jansen (2009) Chapter 3.7. Determining the significance threshold eQTL Analysis in Mice and Rats 1, 20–25
Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.
Rossini, A., Tierney, L., and Li, N. (2003), Simple parallel statistical computing. R. UW Biostatistics working paper series University of Washington. 193
Tierney, L., Rossini, A., Li, N., and Sevcikova, H. (2004), The snow Package: Simple Network of Workstations. Version 0.2-1.
See Also
The MQM tutorial: https://rqtl.org/tutorials/MQM-tour.pdf
-
MQM
- MQM description and references -
mqmscan
- Main MQM single trait analysis -
mqmscanall
- Parallellized traits analysis -
mqmaugment
- Augmentation routine for estimating missing data -
mqmautocofactors
- Set cofactors using marker density -
mqmsetcofactors
- Set cofactors at fixed locations -
mqmpermutation
- Estimate significance levels -
scanone
- Single QTL scanning
Examples
# Use the multitrait dataset
data(multitrait)
multitrait <- calc.genoprob(multitrait)
result <- mqmpermutation(multitrait,pheno.col=7, n.perm=2, batchsize=2)
## Not run: #Set 50 cofactors
cof <- mqmautocofactors(multitrait,50)
## End(Not run)
multitrait <- fill.geno(multitrait)
result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,
pheno.col=7, n.perm=2,batchsize=2,verbose=FALSE)
#Create a permutation object
f2perm <- mqmprocesspermutation(result)
#Get Significant LOD thresholds
summary(f2perm)