qrnn.predict {qrnn} | R Documentation |
Evaluate quantiles from trained QRNN model
Description
Evaluate a fitted QRNN model or ensemble of models, resulting in a list containing the predicted quantiles.
Usage
qrnn.predict(x, parms)
Arguments
x |
covariate matrix with number of rows equal to the number of samples and number of columns equal to the number of variables. |
parms |
list containing QRNN input-hidden and hidden-output layer weight matrices and other parameters from |
Value
a list with number of elements equal to that of parms
, each containing a column matrix of predicted quantiles.
See Also
Examples
x <- as.matrix(iris[,"Petal.Length",drop=FALSE])
y <- as.matrix(iris[,"Petal.Width",drop=FALSE])
cases <- order(x)
x <- x[cases,,drop=FALSE]
y <- y[cases,,drop=FALSE]
y[y < 0.5] <- 0.5
set.seed(1)
parms <- qrnn.fit(x=x, y=y, n.hidden=3, tau=0.5, lower=0.5,
iter.max=500, n.trials=1)
p <- qrnn.predict(x=x, parms=parms)
matplot(x, cbind(y, p), type=c("p", "l"), pch=1, lwd=1)
[Package qrnn version 2.1.1 Index]