GEV {qrmtools} | R Documentation |
Generalized Extreme Value Distribution
Description
Density, distribution function, quantile function and random variate generation for the generalized extreme value distribution (GEV).
Usage
dGEV(x, shape, loc = 0, scale = 1, log = FALSE)
pGEV(q, shape, loc = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qGEV(p, shape, loc = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rGEV(n, shape, loc = 0, scale = 1)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
shape |
GEV shape parameter |
loc |
GEV location parameter |
scale |
GEV scale parameter |
lower.tail |
|
log , log.p |
logical; if |
Details
The distribution function of the generalized extreme value distribution is given by
F(x) = \left\{ \begin{array}{ll}
\exp(-(1-\xi(x-\mu)/\sigma)^{-1/\xi}), & \xi\neq 0,\ 1+\xi(x-\mu)/\sigma>0,\\
\exp(-e^{-(x-\mu)/\sigma}), & \xi = 0,
\end{array}\right.
where \sigma>0
.
Value
dGEV()
computes the density, pGEV()
the distribution
function, qGEV()
the quantile function and rGEV()
random
variates of the generalized extreme value distribution.
Author(s)
Marius Hofert
References
McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press.
Examples
## Basic sanity checks
plot(pGEV(rGEV(1000, shape = 0.5), shape = 0.5)) # should be U[0,1]
curve(dGEV(x, shape = 0.5), from = -3, to = 5)