summary.iqrL {qrcm} | R Documentation |
Summary After Quantile Regression Coefficients Modeling With Longitudinal Data
Description
Summary of an object of class “iqrL
”.
Usage
## S3 method for class 'iqrL'
summary(object, p, level, cov = FALSE, ...)
Arguments
object |
an object of class “ |
p |
an optional vector of quantiles. |
level |
a numeric scalar. Use |
cov |
logical. If TRUE, the covariance matrix of the coefficients or is reported. Ignored if p is missing. |
... |
for future methods. |
Value
If p is supplied,
a standard summary of the estimated quantile regression coefficients
is returned for each value of p: if level = 1,
a summary of beta(p)
, and if level = 2, a summary of gamma(p)
.
If cov = TRUE, the covariance matrix is also reported.
If p is missing (the default), a list with the following items:
converged |
logical value indicating the convergence status. |
n.it |
the number of iterations. |
n |
the number of observations. |
n.id |
the number of unique ids. |
free.par |
the number of free parameters in the model, excluding fixed effects. |
theta |
the estimate of |
se.theta |
the estimated standard errors associated with theta. |
phi |
the estimate of |
se.phi |
the estimated standard errors associated with phi. |
test.row.theta , test.row.phi |
Wald test for the covariates. Each row of |
test.col.theta , test.col.phi |
Wald test for the building blocks of the quantile function. Each column of |
obj.function |
the minimized loss function. |
call |
the matched call. |
Author(s)
Paolo Frumento paolo.frumento@unipi.it
See Also
iqrL
, for model fitting; predict.iqrL
and plot.iqrL
,
for predicting and plotting objects of class “iqrL
”; test.fit.iqrL
for a goodness-of-fit test.
Examples
# using simulated data
n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id
x <- rexp(n) # a covariate
V <- runif(n.id) # V_i
U <- runif(n) # U_it
y <- 1 + 2*log(U) + 3*x + 0.5*qnorm(V)
# true quantile function: Q(u,v | x) = beta0(u) + beta1(u)*x + gamma0(v), with
# beta0(u) = 1 + 2*log(u)
# beta1(u) = 3
# gamma0(v) = 0.5*qnorm(v)
model <- iqrL(fx = y ~ x, fu = ~ 1 + I(log(u)), fz = ~ 1, fv = ~ -1 + I(qnorm(v)), id = id)
summary(model)
summary(model, level = 1, p = c(0.25, 0.75)) # summary of beta(u) at selected quantiles
summary(model, level = 2, p = c(0.1, 0.9)) # summary of gamma(v) at selected quantiles