fitQmapPTF {qmap} | R Documentation |
Quantile mapping using parametric transformations
Description
fitQmapPTF
fits a parametric transformations to the
quantile-quantile relation of observed and modelled
values. doQmapPTF
uses the transformation to adjust the
distribution of the modelled data to match the distribution of the
observations.
Usage
fitQmapPTF(obs, mod, ...)
## Default S3 method:
fitQmapPTF(obs, mod, transfun=c("power","linear","expasympt",
"scale","power.x0","expasympt.x0"), wet.day=TRUE,
cost=c("RSS","MAE"), qstep=0.001,opar,...)
## S3 method for class 'matrix'
fitQmapPTF(obs, mod, ...)
## S3 method for class 'data.frame'
fitQmapPTF(obs, mod, ...)
doQmapPTF(x,fobj,...)
## Default S3 method:
doQmapPTF(x,fobj,...)
## S3 method for class 'matrix'
doQmapPTF(x,fobj,...)
## S3 method for class 'data.frame'
doQmapPTF(x,fobj,...)
Arguments
obs |
|
mod |
|
transfun |
either a character string specifying a predefined function used for
the transformation (see Details) or a function with |
wet.day |
|
cost |
Criterion for optimisation. "RSS" minimises the residual sum of squares and produces a least square fit. "MAE" minimises the mean absolute error, which is less sensitive to outliers. |
qstep |
|
opar |
a named list with arguments passed to |
x |
|
fobj |
output from |
... |
Further arguments passed to methods |
Details
Before further computations the empirical cumulative distribution
functions (CDF) of the observed (obs
) and modelled (mod
) are
estimated. If !is.null(qstep)
than mod
and obs
are aggregated to quantiles before model identification as:
quantile(x,probs=seq(0,1,by=qstep)
. If !is.null(qstep)
than mod
and obs
are sorted to produce an estimate of
the empirical CDF. In case of different length of mod
and
obs
than quantile(x,probs=seq(0,1,len=n)]
is used, where
n <- min(length(obs),length(mod))
. NOTE that large values of
qstep
effectively reduce the sample-size and can be used to
speedup computations - but may render estimates less reliable.
wet.day
is intended for the use for precipitation data. Wet day
correction attempts to equalise the fraction of days with
precipitation between the observed and the modelled data. If
wet.day=TRUE
the empirical probability of nonzero observations
is found (obs>=0
) and the corresponding modelled value is
selected as a threshold. All modelled values below this threshold are
set to zero. If wet.day
is numeric
the same procedure is
performed after setting all obs<wet.day
to zero. The
transformations are then only fitted to the portion of the
distributions corresponding to observed wet days. See Piani et. al
(2010) for further explanations.
Transformations (transfun
):
NOTE: If wet day correction is performed (see wet.day
), the
transformations are only fitted to the portion of the empirical CDF
with nonzero observations.
A series of predefined transformations are available and can be
accessed by setting transfun
to one of the following options
(P_o
refers to observed and P_m
to modelled CDFs):
"power"
:
P_o=b*P_m^c
"linear"
:
P_o=a+b*P_m
"expasympt"
(exponential tendency to an asymptote):
P_o=(a+b*P_m)*(1-exp(-P_m/\tau))
"scale"
:
P_o=b*P_m
"power.x0"
:
P_o=b*(P_m-x0)^c
"expasympt.x0"
(exponential tendency to an asymptote):
P_o=(a+b*P_m)*(1-exp(-(P_m-x0)/\tau))
Value
fitQmapPTF
returns an object of class fitQmapPTF
containing following elements:
tfun |
The function used to transform the distribution of the modelled values to match the distribution of the observations. |
par |
A matrix. The (named) columns correspond to the parameters
of the transfer function. The rows correspond to pairs of time
series in |
wet.day |
|
doQmapPTF
returns a numeric
vector, matrix
or
data.frame
depending on the format of x
.
Author(s)
Lukas Gudmundsson
References
The implementation is closely related to the methods published in:
Piani, C.; Weedon, G.; Best, M.; Gomes, S.; Viterbo, P.; Hagemann, S. & Haerter, J. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 2010, 395, 199 - 215, doi:10.1016/j.jhydrol.2010.10.024.
Dosio, A. & Paruolo, P. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. J. Geophys. Res., AGU, 2011, 116, D16106, doi:10.1029/2011JD015934.
For a general assessment of the methods see:
Gudmundsson, L.; Bremnes, J. B.; Haugen, J. E. & Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrology and Earth System Sciences, 2012, 16, 3383-3390, doi:10.5194/hess-16-3383-2012.
See Also
Examples
data(obsprecip)
data(modprecip)
## data.frame example
qm.fit <- fitQmapPTF(obsprecip,modprecip,
transfun="power.x0",
cost="RSS",wet.day=TRUE,
qstep=0.001)
qm <- doQmapPTF(modprecip,qm.fit)
## application to "single time series"
qm.b.fit <- fitQmapPTF(obsprecip[,1],modprecip[,1],
transfun="expasympt.x0",
cost="RSS",wet.day=0.1,
qstep=0.001)
qm.b <- doQmapPTF(modprecip[,1],qm.b.fit)
qm.c.fit <- fitQmapPTF(obsprecip[,1],modprecip[,1],
transfun="expasympt",
cost="RSS",wet.day=TRUE,
qstep=0.001)
qm.c <- doQmapPTF(modprecip[,1],qm.c.fit)
## user defined transfer function
## and usage of the 'opar' argument
## (same as transfun="power")
myff <- function(x,a,b) a*x^b
qm3.fit <- fitQmapPTF(obsprecip[,1],modprecip[,1],
transfun=myff,
opar=list(par=c(a=1,b=1)),
cost="RSS",wet.day=TRUE,
qstep=0.001)
qm3 <- doQmapPTF(modprecip[,1],qm3.fit)
sqrtquant <- function(x,qstep=0.01){
qq <- quantile(x,prob=seq(0,1,by=qstep))
sqrt(qq)
}
plot(sqrtquant(modprecip[,1]),
sqrtquant(obsprecip[,1]))
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm[,1]),col="red")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.b),col="blue")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.c),col="green")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm3),col="orange")
legend("topleft",
legend=c("power.x0","expasympt.x0",
"expasympt","myff"),
col=c("red","blue","green","orange"),lty=1)