fitQmapDIST {qmap} | R Documentation |
Quantile mapping using distribution derived transformations
Description
fitQmapDIST
fits a theoretical distribution to observed and to
modelled time series and returns these parameters as well as a
transfer function derived from the distribution. doQmapDIST
uses the transfer function to transform the distribution of the
modelled data to match the distribution of the observations.
Usage
fitQmapDIST(obs, mod, ...)
## Default S3 method:
fitQmapDIST(obs,mod,distr="berngamma",start.fun,
qstep=NULL,mlepar,...)
## S3 method for class 'matrix'
fitQmapDIST(obs, mod, ...)
## S3 method for class 'data.frame'
fitQmapDIST(obs, mod, ...)
doQmapDIST(x,fobj,...)
## Default S3 method:
doQmapDIST(x,fobj,...)
## S3 method for class 'matrix'
doQmapDIST(x,fobj,...)
## S3 method for class 'data.frame'
doQmapDIST(x,fobj,...)
Arguments
obs |
|
mod |
|
distr |
A character string |
start.fun |
function estimating starting values for parameter
optimisation. Default starting values are provided for
|
qstep |
|
mlepar |
a named list. Names correspond to parameters passed to
|
x |
|
fobj |
output from |
... |
Further arguments passed to methods |
Details
Quantile mapping using distribution derived transformations to adjust
the distribution of a modelled variable (P_m
) such that it
matches the distribution of an observed variable (P_o
). The
distribution derived transfer function is defined as
P_o=F^{-1}_o(F_m(P_m))
where F
is a CDF and F^{-1}
is the corresponding quantile
function (inverse CDF). The subscripts o
and m
indicate
parameters of the distribution that correspond to observed and
modelled data respectively.
Value
fitQmapDIST
returns an object of class fitQmapDIST
containing following elements:
tfun |
The function used to transform the distribution of
modelled values such that the distribution of observations. The
function is build internally based on the distribution function
("pname") and quantile function ("qname") corresponding to
|
par |
A matrix. The (named) columns correspond to the parameters
of the distribution specified in |
doQmapDIST
returns a numeric
vector, matrix
or
data.frame
depending on the format of x
.
Author(s)
Lukas Gudmundsson
References
Piani, C.; Haerter, J. & Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 2010, 99, 187-192, doi:10.1007/s00704-009-0134-9.
Li, H.; Sheffield, J. & Wood, E. F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 2010, 115, D10101, doi:10.1029/2009JD012882.
Ines, A. V. & Hansen, J. W. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 2006, 138, 44 - 53, doi: 10.1016/j.agrformet.2006.03.009.
For a general assessment of the methods see:
Gudmundsson, L.; Bremnes, J. B.; Haugen, J. E. & Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrology and Earth System Sciences, 2012, 16, 3383-3390, doi:10.5194/hess-16-3383-2012.
See Also
doQmap
, startberngamma
,
berngamma
, startbernweibull
,
bernweibull
, startbernlnorm
,
bernlnorm
, startbernexp
,
bernexp
, mledist
, fitdist
Examples
data(obsprecip)
data(modprecip)
qm.fit <- fitQmapDIST(obsprecip[,1],modprecip[,1],
distr="berngamma",
qstep=0.001)
qm <- doQmapDIST(modprecip[,1],qm.fit)
qm.lnorm.fit <- fitQmapDIST(obsprecip[,1],modprecip[,1],
distr="bernlnorm",
qstep=0.001)
qm.lnorm <- doQmapDIST(modprecip[,1],qm.lnorm.fit)
qm.weibu.fit <- fitQmapDIST(obsprecip[,1],modprecip[,1],
distr="bernweibull",
qstep=0.001)
qm.weibu <- doQmapDIST(modprecip[,1],qm.weibu.fit)
qm.exp.fit <- fitQmapDIST(sqrt(obsprecip[,1]),sqrt(modprecip[,1]),
distr="bernexp",
qstep=0.001)
qm.exp <- doQmapDIST(sqrt(modprecip[,1]),qm.exp.fit)^2
## utility function.
## plots are easier to investigate if
## precipitation data are sqrt transformed
sqrtquant <- function(x,qstep=0.01){
qq <- quantile(x,prob=seq(0,1,by=qstep))
sqrt(qq)
}
plot(sqrtquant(modprecip[,1]),
sqrtquant(obsprecip[,1]))
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm),col="red")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.lnorm),col="blue")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.weibu),col="green")
lines(sqrtquant(modprecip[,1]),
sqrtquant(qm.exp),col="orange")
legend("topleft",
legend=c("berngamma","bernlnorm","bernweibull","bernexp"),
lty=1,
col=c("red","blue","green","orange"))
## effect of qstep on speed of fitting process:
system.time(
qm.a.fit <- fitQmapDIST(obsprecip[,2],modprecip[,2],
distr="berngamma",
start.fun=startberngamma,
qstep=0.001)
)
system.time(
qm.b.fit <- fitQmapDIST(obsprecip[,2],modprecip[,2],
distr="berngamma",
start.fun=startberngamma,
qstep=0.01)
)
qm.a <- doQmapDIST(modprecip[,2],qm.a.fit)
qm.b <- doQmapDIST(modprecip[,2],qm.b.fit)
plot(sqrtquant(modprecip[,2]),
sqrtquant(obsprecip[,2]))
lines(sqrtquant(modprecip[,2]),
sqrtquant(qm.a),col="red")
lines(sqrtquant(modprecip[,2]),
sqrtquant(qm.b),col="blue")
legend("topleft",
legend=c("qstep=0.001","qstep=0.01"),
col=c("red","blue"),
lty=1)
## method for matrix
## the sqrt() transformation renders the
## fitting procedure more stable
qm2.fit <- fitQmapDIST(sqrt(obsprecip),sqrt(modprecip),
distr="berngamma",
qstep=0.001)
qm2 <- doQmapDIST(sqrt(modprecip),qm2.fit)^2
if(!any(is.na(qm2.fit$par))){
op <- par(mfrow=c(1,3))
for(i in 1:3){
plot(sqrtquant(modprecip[,i]),
sqrtquant(obsprecip[,i]))
lines(sqrtquant(modprecip[,i]),
sqrtquant(qm2[,i]),col="red")
}
par(op)
}