sim.strings {qlcMatrix} | R Documentation |
String similarity by cosine similarity between bigram vectors
Description
Efficient computation of pairwise string similarities using a cosine similarity on bigram vectors.
Usage
sim.strings(strings1, strings2 = NULL, sep = "", boundary = TRUE, ...)
Arguments
strings1 , strings2 |
Vector with strings to be compared, will be treated |
sep |
Separator used to split the strings into parts. This will be passed to |
boundary |
In the default setting |
... |
Further arguments passed to |
Details
The strings are converted into sparse matrices by splitStrings
, and then assocSparse
computes a cosine similarity on the bigram vectors. Only the option of bigrams is currently used, because for long lists of real words from a real language this seems to be an optimal tradeoff between speed and useful similarity.
Value
When either length(strings1) == 1
or length(strings2) == 1
, the result will be a normal vector with similarities between 0 and 1.
When both the input vectors are longer than 1, then the result will be a sparse matrix with similarities. When only strings1
is provided, then the result is of type dsCMatrix
. When two input vectors are provided, the result is of type dgCMatrix
.
Note
The overhead of converting the strings into sparse matrices makes this function not optimal for small datasets. For large datasets the time of the conversion is negligible compared to the actual similarity computation, and then this approach becomes very worthwhile, because fast, and based on sparse matrix computation, that can be sped up by multicore processing in the future.
The result of sim.strings(a)
and sim.strings(a,a)
is identical, but the first version is more efficient, both as to processing time, as well as to the size of the resulting objects.
Note
There is a bash-executable simstrings
distributed with this package (based on the docopt
package) that let you use this function directly in a bash-terminal. The easiest way to use this executable is to softlink the executable to some directory in your bash PATH, for example /usr/local/bin
or simply ~/bin
. To softlink the function sim.strings
to this directory, use something like the following in your bash terminal:
ln -is `Rscript -e 'cat(system.file("exec/simstrings", package="qlcMatrix"))'` ~/bin
From within R your can also use the following (again, optionally changing the linked-to directory from ~/bin
to anything more suitable on your system):
file.symlink(system.file("exec/simstrings", package="qlcMatrix"), "~/bin")
Author(s)
Michael Cysouw
See Also
splitStrings, cosSparse
on which this function is based. Compare with adist
from the utils package. On large datasets, sim.strings
seems to be about a factor 30 quicker. The package stringdist
offers many more string comparison methods.
Examples
# ----- simple example -----
example <- c("still","till","stable","stale","tale","tall","ill","all")
( sim <- round( sim.strings(example), digits = 3) )
# show similarity in non-metric MDS
mds <- MASS::isoMDS( as.dist(1-sim) )$points
plot(mds, type = "n", ann = FALSE, axes = FALSE)
text(mds, labels = example)
# ----- large example -----
# This similarity is meant to be used for large lists of wordforms.
# for example, all 15526 wordforms from the English Dalby Bible
# takes just a few seconds for the more than 1e8 pairwise comparisons
data(bibles)
words <- splitText(bibles$eng)$wordforms
system.time( sim <- sim.strings(words) )
# see most similar words
rownames(sim) <- colnames(sim) <- words
sort(sim["walk",], decreasing = TRUE)[1:10]
# just compare all words to "walk". This is the same as above, but less comparisons
# note that the overhead for the sparse conversion and matching of matrices is large
# this one is faster than doing all comparisons, but only be a factor 10
system.time( sim <- sim.strings(words, "walk"))
names(sim) <- words
sort(sim, decreasing = TRUE)[1:10]
# ----- comparison with Levinshtein -----
# don't try this with 'adist' from the utils package, it will take long!
# for a comparison, only take 2000 randomly selected strings: about a factor 20 slower
w <- sample(words, 2000)
system.time( sim1 <- sim.strings(w) )
system.time( sim2 <- adist(w) )
# compare the current approach with relative levenshtein similarity
# = number of matches / ( number of edits + number of matches)
# for reasons of speed, just take 1000 random words from the english bible
w <- sample(words, 1000)
sim1 <- sim.strings(w)
tmp <- adist(w, counts = TRUE)
sim2 <- 1- ( tmp / nchar(attr(tmp, "trafos")) )
# plotting relation between the two 'heatmap-style'
# not identical, but usefully similar
image( log(table(
round(as.dist(sim1) / 3, digits = 2) * 3,
round(as.dist(sim2) / 3, digits = 2) * 3 )),
xlab = "bigram similarity", ylab = "relative Levenshtein similarity")