| qkgda-class {qkerntool} | R Documentation |
Class "qkgda"
Description
The qkernel Generalized Discriminant Analysis class
Objects of class "qkgda"
Objects can be created by calls of the form new("qkgda", ...).
or by calling the qkgda function.
Slots
prj:Object of class
"matrix"containing the normalized projections on eigenvectorseVal:Object of class
"matrix"containing the corresponding eigenvalueseVec:Object of class
"matrix"containing the corresponding eigenvectorslabel:Object of class
"matrix"containing the categorical variables that the categorical data be assigned to one of the categories
Methods
- prj
signature(object = "qkgda"): returns the normalized projections- eVal
signature(object = "qkgda"): returns the eigenvalues- eVec
signature(object = "qkgda"): returns the eigenvectors- kcall
signature(object = "qkgda"): returns the performed call- cndkernf
signature(object = "qkgda"): returns the used kernel function- predict
signature(object = "qkgda"): embeds new data- xmatrix
signature(object = "qkgda"): returns the used data matrix
Author(s)
Yusen Zhang
yusenzhang@126.com
See Also
qkernel-class,
cndkernel-class
Examples
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), Sp = rep(c("1","2","3"), rep(50,3)))
testset <- sample(1:150,20)
train <- as.matrix(iris[-testset,-5])
test <- as.matrix(iris[testset,-5])
Sp = rep(c("1","2","3"), rep(50,3))
labels <-as.numeric(Sp)
trainlabel <- labels[-testset]
testlabel <- labels[testset]
kgda1 <- qkgda(train, label=trainlabel, kernel = "ratibase", qpar = list(c=1,q=0.9),features = 2)
prj(kgda1)
eVal(kgda1)
eVec(kgda1)
cndkernf(kgda1)
kcall(kgda1)