| qkdbscan-class {qkerntool} | R Documentation |
Class "qkdbscan"
Description
The qkernel-DBSCAN class.
Objects of class "qkdbscan"
Objects can be created by calls of the form new("qkdbscan", ...).
or by calling the qkdbscan function.
Slots
clust:Object of class
"vector"containing the cluster membership of the sampleseps:Object of class
"numeric"containing the reachability distanceMinPts:Object of class
"numeric"containing the reachability minimum number of pointsisseed:Object of class
"logical"containing the logical vector indicating whether a point is a seed (not border, not noise)
Methods
- clust
signature(object = "qkdbscan"): returns the cluster membership- kcall
signature(object = "qkdbscan"): returns the performed call- cndkernf
signature(object = "qkdbscan"): returns the used kernel function- eps
signature(object = "qkdbscan"): returns the reachability distance- MinPts
signature(object = "qkdbscan"): returns the reachability minimum number of points- predict
signature(object = "qkdbscan"): embeds new data- xmatrix
signature(object = "qkdbscan"): returns the used data matrix
Author(s)
Yusen Zhang
yusenzhang@126.com
See Also
qkernel-class,
cndkernel-class
Examples
# a simple example using the iris data
x<- as.matrix(iris[,-5])
ds <- qkdbscan (x,kernel="laplbase",qpar=list(sigma=3.5,q=0.8),eps=0.15,
MinPts=5,hybrid = FALSE)
# print the results
clust(ds)
eps(ds)
MinPts(ds)
cndkernf(ds)
xmatrix(ds)
kcall(ds)