qkMDS-class {qkerntool} | R Documentation |
qKernel Metric Multi-Dimensional Scaling
Description
The qkernel Metric Multi-Dimensional Scaling class
Objects of class "qkMDS"
Objects can be created by calls of the form new("qkMDS", ...)
.
or by calling the qkMDS
function.
Slots
prj
:Object of class
"matrix"
containing the Nxdim matrix (N samples, dim features) with the reduced input data (list of several matrices if more than one dimension specified)dims
:Object of class
"numeric"
containing the dimension of the target space (default 2)connum
:Object of class
"numeric"
containing the number of connected components in graphResiduals
:Object of class
"vector"
containing the residual variances for all dimensionseVal
:Object of class
"vector"
containing the corresponding eigenvalueseVec
:Object of class
"vector"
containing the corresponding eigenvectors
Methods
- prj
signature(object = "qkMDS")
: returns the Nxdim matrix (N samples, dim features)- dims
signature(object = "qkMDS")
: returns the dimension- Residuals
signature(object = "qkMDS")
: returns the residual variances- eVal
signature(object = "qkMDS")
: returns the eigenvalues- eVec
signature(object = "qkMDS")
: returns the eigenvectors- xmatrix
signature(object = "qkMDS")
: returns the used data matrix- kcall
signature(object = "qkMDS")
: returns the performed call- cndkernf
signature(object = "qkMDS")
: returns the used kernel function
Author(s)
Yusen Zhang
yusenzhang@126.com
See Also
qkernel-class
,
cndkernel-class
,
qkMDS
Examples
# another example using the iris
data(iris)
testset <- sample(1:150,20)
train <- as.matrix(iris[-testset,-5])
labeltrain<- as.integer(iris[-testset,5])
test <- as.matrix(iris[testset,-5])
# ratibase(c=1,q=0.8)
d_low = qkMDS(train, kernel = "ratibase", qpar = list(c=1,q=0.8),
dims=2, plotResiduals = TRUE)
#plot the data projection on the components
plot(prj(d_low),col=labeltrain, xlab="1st Principal Component",ylab="2nd Principal Component")
prj(d_low)
dims(d_low)
Residuals(d_low)
eVal(d_low)
eVec(d_low)
kcall(d_low)
cndkernf(d_low)