| qkIsomap-class {qkerntool} | R Documentation |
qKernel Isomap embedding
Description
The qKernel Isometric Feature Mapping class
Objects of class "qkIsomap"
Objects can be created by calls of the form new("qkIsomap", ...).
or by calling the qkIsomap function.
Slots
prj:Object of class
"matrix"containing the Nxdim matrix (N samples, dim features) with the reduced input data (list of several matrices if more than one dimension specified)dims:Object of class
"numeric"containing the dimension of the target space (default 2)connum:Object of class
"numeric"containing the number of connected components in graphResiduals:Object of class
"vector"containing the residual variances for all dimensionseVal:Object of class
"vector"containing the corresponding eigenvalueseVec:Object of class
"vector"containing the corresponding eigenvectors
Methods
- prj
signature(object = "qkIsomap"): returns the Nxdim matrix (N samples, dim features)- dims
signature(object = "qkIsomap"): returns the dimension- Residuals
signature(object = "qkIsomap"): returns the residual variances- eVal
signature(object = "qkIsomap"): returns the eigenvalues- eVec
signature(object = "qkIsomap"): returns the eigenvectors- xmatrix
signature(object = "qkIsomap"): returns the used data matrix- kcall
signature(object = "qkIsomap"): returns the performed call- cndkernf
signature(object = "qkIsomapa"): returns the used kernel function
Author(s)
Yusen Zhang
yusenzhang@126.com
See Also
qkernel-class,
cndkernel-class,
qkIsomap
Examples
# another example using the iris data
data(iris)
testset <- sample(1:150,20)
train <- as.matrix(iris[-testset,-5])
labeltrain<- as.integer(iris[-testset,5])
test <- as.matrix(iris[testset,-5])
# ratibase(c=1,q=0.8)
d_low = qkIsomap(train, kernel = "ratibase", qpar = list(c=1,q=0.8),
dims=2, k=5, plotResiduals = TRUE)
#plot the data projection on the components
plot(prj(d_low),col=labeltrain, xlab="1st Principal Component",ylab="2nd Principal Component")
prj(d_low)
dims(d_low)
Residuals(d_low)
eVal(d_low)
eVec(d_low)
kcall(d_low)
cndkernf(d_low)