range_qfr {qfratio} | R Documentation |
Get range of ratio of quadratic forms
Description
range_qfr()
: internal function to obtain the possible range of
a ratio of quadratic forms,
\frac{ \mathbf{x^{\mathit{T}} A x} }{ \mathbf{x^{\mathit{T}} B x} }
.
gen_eig()
is an internal function to obtain generalized eigenvalues,
i.e., roots of
\det{\mathbf{A} - \lambda \mathbf{B}} = 0
,
which are the eigenvalues of \mathbf{B}^{-1} \mathbf{A}
if
\mathbf{B}
is nonsingular.
Usage
range_qfr(
A,
B,
eigB = eigen(B, symmetric = TRUE),
tol = .Machine$double.eps * 100,
t = 0.001
)
gen_eig(
A,
B,
eigB = eigen(B, symmetric = TRUE),
Ad = with(eigB, crossprod(crossprod(A, vectors), vectors)),
tol = .Machine$double.eps * 100,
t = 0.001
)
Arguments
A , B |
Symmetric matrices. No check is done. |
eigB |
Result of |
tol |
Tolerance to determine numerical zero |
t |
Tolerance used to determine whether estimates are numerically stable;
|
Ad |
|
Details
gen_eig()
solves the generalized eigenvalue problem with
Jennings et al.'s (1978) algorithm. The sign of infinite eigenvalue
(when present) cannot be determined from this algorithm, so is deduced
as follows: (1) \mathbf{A}
and \mathbf{B}
are rotated by
the eigenvectors of \mathbf{B}
; (2) the submatrix of rotated
\mathbf{A}
corresponding to the null space of \mathbf{B}
is examined; (3) if this is nonnegative (nonpositive) definite, the result
must have positive (negative, resp.) infinity; if this is indefinite,
the result must have both positive and negative infinities;
if this is (numerically) zero, the result must have NaN
. The last
case is expeted to happen very rarely, as in this case Jennings algorithm
would fail. This is where the null space of \mathbf{B}
is
a subspace of that of \mathbf{A}
, so that the range of ratio of
quadratic forms can be well-behaved. range_qfr()
tries to detect
this case and handle the range accordingly, but if that is infeasible
it returns c(-Inf, Inf)
.
References
Jennings, A., Halliday, J. and Cole, M. J. (1978) Solution of linear generalized eigenvalue problems containing singular matrices. Journal of the Institute of Mathematics and Its Applications, 22, 401–410. doi:10.1093/imamat/22.4.401.