sar.gc.bootstrap {qfa} | R Documentation |
Bootstrap Simulation of SAR Coefficients for Granger-Causality Analysis
Description
This function simulates bootstrap samples of selected spline autoregression (SAR) coefficients
for Granger-causality analysis based on the SAR model of quantile series (QSER) under H0:
(a) for multiple time series, the second series specified in index
is not causal
for the first series specified in index
;
(b) for single time series, the series is not causal at the lags specified in index
.
Usage
sar.gc.bootstrap(
y.qser,
fit,
index = c(1, 2),
nsim = 1000,
method = c("ar", "sar"),
n.cores = 1,
mthreads = FALSE,
seed = 1234567
)
Arguments
y.qser |
matrix or array of QSER from |
fit |
object of SAR model from |
index |
a pair of component indices for multiple time series
or a sequence of lags for single time series (default = |
nsim |
number of bootstrap samples (default = 1000) |
method |
method of residual calculation: |
n.cores |
number of cores for parallel computing (default = 1) |
mthreads |
if |
seed |
seed for random sampling (default = |
Value
array of simulated bootstrap samples of selected SAR coefficients
Examples
y1 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y2 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
y.sar <- qspec.sar(cbind(y1,y2),tau=tau,p=1)
A.sim <- sar.gc.bootstrap(y.sar$qser,y.sar$fit,index=c(1,2),nsim=5)