sar.eq.bootstrap {qfa} | R Documentation |
Bootstrap Simulation of SAR Coefficients for Testing Equality of Granger-Causality in Two Samples
Description
This function simulates bootstrap samples of selected spline autoregression (SAR) coefficients for testing equality of Granger-causality in two samples based on their SAR models under H0: effect in each sample equals the average effect.
Usage
sar.eq.bootstrap(
y.qser,
fit,
fit2,
index = c(1, 2),
nsim = 1000,
method = c("ar", "sar"),
n.cores = 1,
mthreads = FALSE,
seed = 1234567
)
Arguments
y.qser |
matrix or array of QSER from |
fit |
object of SAR model from |
fit2 |
object of SAR model for the other sample |
index |
a pair of component indices for multiple time series
or a sequence of lags for single time series (default = |
nsim |
number of bootstrap samples (default = 1000) |
method |
method of residual calculation: |
n.cores |
number of cores for parallel computing (default = 1) |
mthreads |
if |
seed |
seed for random sampling (default = |
Value
array of simulated bootstrap samples of selected SAR coefficients
Examples
y11 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y21 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
y12 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y22 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
y1.sar <- qspec.sar(cbind(y11,y21),tau=tau,p=1)
y2.sar <- qspec.sar(cbind(y12,y22),tau=tau,p=1)
A1.sim <- sar.eq.bootstrap(y1.sar$qser,y1.sar$fit,y2.sar$fit,index=c(1,2),nsim=5)
A2.sim <- sar.eq.bootstrap(y2.sar$qser,y2.sar$fit,y1.sar$fit,index=c(1,2),nsim=5)