qspec.sqrlw {qfa} | R Documentation |
Spline-Quantile-Regression-Lag-Window (SQRLW) Estimator of Quantile Spectrum
Description
This function computes spline-quantile-regression-lag-window (SQRLW) estimate of quantile spectrum/cross-spectrum from time series or spline quantile discrete Fourier transform (SQDFT).
Usage
qspec.sqrlw(
y,
tau,
y.sqdft = NULL,
M = NULL,
c0 = 0.02,
d = 4,
weighted = FALSE,
n.cores = 1,
cl = NULL
)
Arguments
y |
vector or matrix of time series (if matrix, |
tau |
sequence of quantile levels in (0,1) |
y.sqdft |
matrix or array of pre-calculated SQDFT (default = |
M |
bandwidth parameter of lag window (default = |
c0 |
penalty parameter for SQDFT |
d |
subsampling rate of quantile levels for SQDFT (default = 1) |
weighted |
if |
n.cores |
number of cores for parallel computing of SQDFT (default = 1) |
cl |
pre-existing cluster for repeated parallel computing of SQDFT (default = |
Value
A list with the following elements:
spec |
matrix or array of quantile spectrum/cross-spectrum |
lw |
lag-window sequence |
sqdft |
matrix or array of spline quantile discrete Fourier transform if |
Examples
y1 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y2 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
n <- length(y1)
ff <- c(0:(n-1))/n
sel.f <- which(ff > 0 & ff < 0.5)
y.qper.sqrlw <- qspec.sqrlw(cbind(y1,y2),tau,M=5,c0=0.02,d=4)$spec
qfa.plot(ff[sel.f],tau,Re(y.qper.sqrlw[1,1,sel.f,]))