qspec.lwqs {qfa} | R Documentation |
Lag-Window-Quantile-Smoothing (LWQS) Estimator of Quantile Spectrum
Description
This function computes lag-window-quantile-smoothing (LWQS) estimate of quantile spectrum/cross-spectrum from time series or quantile autocovariance function (QACF).
Usage
qspec.lwqs(
y,
tau,
y.qacf = NULL,
M = NULL,
method = c("gamm", "sp"),
spar = "GCV",
n.cores = 1,
cl = NULL
)
Arguments
y |
vector or matrix of time series (if matrix, |
tau |
sequence of quantile levels in (0,1) |
y.qacf |
matrix or array of pre-calculated QACF (default = |
M |
bandwidth parameter of lag window (default = |
method |
smoothing method: |
spar |
smoothing parameter in |
n.cores |
number of cores for parallel computing (default = 1) |
cl |
pre-existing cluster for repeated parallel computing (default = |
Value
A list with the following elements:
spec |
matrix or array of quantile spectrum/cross-spectrum |
spec.lw |
matrix or array of quantile spectrum/cross-spectrum without quantile smoothing |
lw |
lag-window sequence |
qacf |
matrix or array of quantile autocovariance function if |
Examples
y1 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y2 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
n <- length(y1)
ff <- c(0:(n-1))/n
sel.f <- which(ff > 0 & ff < 0.5)
y.qper.lwqs <- qspec.lwqs(cbind(y1,y2),tau,M=5,method="sp",spar=0.9)$spec
qfa.plot(ff[sel.f],tau,Re(y.qper.lwqs[1,1,sel.f,]))