qspec.ar {qfa} | R Documentation |
Autoregression (AR) Estimator of Quantile Spectrum
Description
This function computes autoregression (AR) estimate of quantile spectrum/cross-spectrum from time series or quantile series (QSER).
Usage
qspec.ar(
y,
tau,
y.qser = NULL,
p = NULL,
order.max = NULL,
freq = NULL,
n.cores = 1,
cl = NULL
)
Arguments
y |
vector or matrix of time series (if matrix, |
tau |
sequence of quantile levels in (0,1) |
y.qser |
matrix or array of pre-calculated QSER (default = |
p |
order of AR model (default = |
order.max |
maximum order for AIC if |
freq |
sequence of frequencies in [0,1) (default = |
n.cores |
number of cores for parallel computing of QDFT if |
cl |
pre-existing cluster for repeated parallel computing of QDFT (default = |
Value
a list with the following elements:
spec |
matrix or array of AR quantile spectrum/cross-spectrum |
freq |
sequence of frequencies |
fit |
object of AR model |
qser |
matrix or array of quantile series if |
Examples
y1 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y2 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
n <- length(y1)
ff <- c(0:(n-1))/n
sel.f <- which(ff > 0 & ff < 0.5)
y.ar <- qspec.ar(cbind(y1,y2),tau,p=1)
qfa.plot(ff[sel.f],tau,Re(y.ar$spec[1,1,sel.f,]))