qdft {qfa} | R Documentation |
Quantile Discrete Fourier Transform (QDFT)
Description
This function computes quantile discrete Fourier transform (QDFT) for univariate or multivariate time series.
Usage
qdft(y, tau, n.cores = 1, cl = NULL)
Arguments
y |
vector or matrix of time series (if matrix, |
tau |
sequence of quantile levels in (0,1) |
n.cores |
number of cores for parallel computing (default = 1) |
cl |
pre-existing cluster for repeated parallel computing (default = |
Value
matrix or array of quantile discrete Fourier transform of y
Examples
y <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
tau <- seq(0.1,0.9,0.05)
y.qdft <- qdft(y,tau)
# Make a cluster for repeated use
n.cores <- 2
cl <- parallel::makeCluster(n.cores)
parallel::clusterExport(cl, c("tqr.fit"))
doParallel::registerDoParallel(cl)
y1 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y.qdft <- qdft(y1,tau,n.cores=n.cores,cl=cl)
y2 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y.qdft <- qdft(y2,tau,n.cores=n.cores,cl=cl)
parallel::stopCluster(cl)
[Package qfa version 2.1 Index]