wfm {qdap} | R Documentation |
Word Frequency Matrix
Description
wfm
- Generate a word frequency matrix by grouping variable(s).
wfdf
- Generate a word frequency data frame by grouping variable.
wfm_expanded
- Expand a word frequency matrix to have multiple rows
for each word.
wfm_combine
- Combines words (rows) of a word frequency matrix
(wfdf
) together.
weight
- Weight a word frequency matrix for analysis where such
weighting is sensible.
weight.wfdf
- Weight a word frequency matrix for analysis where such
weighting is sensible.
as.wfm
- Attempts to coerce a matrix to a wfm
.
Usage
wfm(
text.var = NULL,
grouping.var = NULL,
output = "raw",
stopwords = NULL,
char2space = "~~",
...
)
## S3 method for class 'wfdf'
wfm(
text.var = NULL,
grouping.var = NULL,
output = "raw",
stopwords = NULL,
char2space = "~~",
...
)
## S3 method for class 'character'
wfm(
text.var = NULL,
grouping.var = NULL,
output = "raw",
stopwords = NULL,
char2space = "~~",
...
)
## S3 method for class 'factor'
wfm(
text.var = NULL,
grouping.var = NULL,
output = "raw",
stopwords = NULL,
char2space = "~~",
...
)
wfdf(
text.var,
grouping.var = NULL,
stopwords = NULL,
margins = FALSE,
output = "raw",
digits = 2,
char2space = "~~",
...
)
wfm_expanded(text.var, grouping.var = NULL, ...)
wfm_combine(wf.obj, word.lists, matrix = TRUE)
## S3 method for class 'wfm'
weight(x, type = "prop", ...)
## S3 method for class 'wfdf'
weight(x, type = "prop", ...)
as.wfm(x, ...)
## S3 method for class 'matrix'
as.wfm(x, ...)
## Default S3 method:
as.wfm(x, ...)
## S3 method for class 'TermDocumentMatrix'
as.wfm(x, ...)
## S3 method for class 'DocumentTermMatrix'
as.wfm(x, ...)
## S3 method for class 'data.frame'
as.wfm(x, ...)
## S3 method for class 'wfdf'
as.wfm(x, ...)
## S3 method for class 'Corpus'
as.wfm(x, col = "docs", row = "text", ...)
## S3 method for class 'Corpus'
wfm(text.var, ...)
Arguments
text.var |
The text variable. |
grouping.var |
The grouping variables. Default |
output |
Output type (either |
stopwords |
A vector of stop words to remove. |
char2space |
A vector of characters to be turned into spaces. If
|
margins |
logical. If |
digits |
An integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed. |
wf.obj |
A |
word.lists |
A list of character vectors of words to pass to
|
matrix |
logical. If |
x |
An object with words for row names and integer values. |
type |
The type of weighting to use: c( |
col |
The column name (generally not used). |
row |
The row name (generally not used). |
... |
Other arguments supplied to |
Value
wfm
- returns a word frequency of the class matrix.
wfdf
- returns a word frequency of the class data.frame with
a words column and optional margin sums.
wfm_expanded
- returns a matrix similar to a word frequency
matrix (wfm
) but the rows are expanded to represent the maximum usages
of the word and cells are dummy coded to indicate that number of uses.
wfm_combine
- returns a word frequency matrix (wfm
) or
dataframe (wfdf
) with counts for the combined word.lists merged and
remaining terms (else
).
weight
- Returns a weighted matrix for use with other R
packages. The output is not of the class "wfm".
as.wfm
- Returns a matrix of the class "wfm".
Note
Words can be kept as one by inserting a double tilde ("~~"
), or
other character strings passed to char2space, as a single word/entry. This is
useful for keeping proper names as a single unit.
Examples
## Not run:
## word frequency matrix (wfm) example:
with(DATA, wfm(state, list(sex, adult)))[1:15, ]
with(DATA, wfm(state, person))[1:15, ]
Filter(with(DATA, wfm(state, list(sex, adult))), 5)
with(DATA, wfm(state, list(sex, adult)))
## Filter particular words based on max/min values in wfm
v <- with(DATA, wfm(state, list(sex, adult)))
Filter(v, 5)
Filter(v, 5, count.apostrophe = FALSE)
Filter(v, 5, 7)
Filter(v, 4, 4)
Filter(v, 3, 4)
Filter(v, 3, 4, stopwords = Top25Words)
## insert double tilde ("~~") to keep phrases(i.e., first last name)
alts <- c(" fun", "I ")
state2 <- space_fill(DATA$state, alts, rm.extra = FALSE)
with(DATA, wfm(state2, list(sex, adult)))[1:18, ]
## word frequency dataframe (wfdf) example:
with(DATA, wfdf(state, list(sex, adult)))[1:15, ]
with(DATA, wfdf(state, person))[1:15, ]
## wfm_expanded example:
z <- wfm(DATA$state, DATA$person)
wfm_expanded(z)[30:45, ] #two "you"s
## wf_combine examples:
#===================
## raw no margins (will work)
x <- wfm(DATA$state, DATA$person)
## raw with margin (will work)
y <- wfdf(DATA$state, DATA$person, margins = TRUE)
## Proportion matrix
z2 <- wfm(DATA$state, DATA$person, output="proportion")
WL1 <- c(y[, 1])
WL2 <- list(c("read", "the", "a"), c("you", "your", "you're"))
WL3 <- list(bob = c("read", "the", "a"), yous = c("you", "your", "you're"))
WL4 <- list(bob = c("read", "the", "a"), yous = c("a", "you", "your", "your're"))
WL5 <- list(yous = c("you", "your", "your're"))
WL6 <- list(c("you", "your", "your're")) #no name so will be called words 1
WL7 <- c("you", "your", "your're")
wfm_combine(z2, WL2) #Won't work not a raw frequency matrix
wfm_combine(x, WL2) #Works (raw and no margins)
wfm_combine(y, WL2) #Works (raw with margins)
wfm_combine(y, c("you", "your", "your're"))
wfm_combine(y, WL1)
wfm_combine(y, WL3)
## wfm_combine(y, WL4) #Error
wfm_combine(y, WL5)
wfm_combine(y, WL6)
wfm_combine(y, WL7)
worlis <- c("you", "it", "it's", "no", "not", "we")
y <- wfdf(DATA$state, list(DATA$sex, DATA$adult), margins = TRUE)
z <- wfm_combine(y, worlis)
chisq.test(z)
chisq.test(wfm(y))
## Dendrogram
presdeb <- with(pres_debates2012, wfm(dialogue, list(person, time)))
library(sjPlot)
sjc.dend(t(presdeb), 2:4)
## Words correlated within turns of talk
## EXAMPLE 1
library(qdapTools)
x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|")))
dat <- wfm(rajSPLIT$dialogue, x)
cor(t(dat)[, c("romeo", "juliet")])
cor(t(dat)[, c("romeo", "banished")])
cor(t(dat)[, c("romeo", "juliet", "hate", "love")])
qheat(cor(t(dat)[, c("romeo", "juliet", "hate", "love")]),
diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL)
dat2 <- wfm(DATA$state, id(DATA))
qheat(cor(t(dat2)), low = "yellow", high = "red",
grid = "grey90", diag.na = TRUE, by.column = NULL)
## EXAMPLE 2
x2 <- factor(with(pres_debates2012, paste(time, pad(TOT(tot)), sep = "|")))
dat2 <- wfm(pres_debates2012$dialogue, x2)
wrds <- word_list(pres_debates2012$dialogue,
stopwords = c("it's", "that's", Top200Words))
wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1]))
qheat(word_cor(t(dat2), word = wrds2, r = NULL),
diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL,
high="red", low="yellow", grid=NULL)
## EXAMPLE 3
library(gridExtra); library(ggplot2); library(grid)
dat3 <- lapply(qcv(OBAMA, ROMNEY), function(x) {
with(pres_debates2012, wfm(dialogue[person == x], x2[person == x]))
})
# Presidential debates by person
dat5 <- pres_debates2012
dat5 <- dat5[dat5$person %in% qcv(ROMNEY, OBAMA), ]
disp <- with(dat5, dispersion_plot(dialogue, wrds2, grouping.var = person,
total.color = NULL, rm.vars=time))
cors <- lapply(dat3, function(m) {
word_cor(t(m), word = wrds2, r = NULL)
})
plots <- lapply(cors, function(x) {
qheat(x, diag.na = TRUE, values = TRUE, digits = 3, plot = FALSE,
by.column = NULL, high="red", low="yellow", grid=NULL)
})
plots <- lapply(1:2, function(i) {
plots[[i]] + ggtitle(qcv(OBAMA, ROMNEY)[i]) +
theme(axis.title.x = element_blank(),
plot.margin = unit(rep(0, 4), "lines"))
})
grid.arrange(disp, arrangeGrob(plots[[1]], plots[[2]], ncol=1), ncol=2)
## With `word_cor`
worlis <- list(
pronouns = c("you", "it", "it's", "we", "i'm", "i"),
negative = qcv(no, dumb, distrust, not, stinks),
literacy = qcv(computer, talking, telling)
)
y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE))
z <- wfm_combine(y, worlis)
word_cor(t(z), word = names(worlis), r = NULL)
## Plotting method
plot(y, TRUE)
plot(z)
## Correspondence Analysis
library(ca)
dat <- pres_debates2012
dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]
speech <- stemmer(dat$dialogue)
mytable1 <- with(dat, wfm(speech, list(person, time), stopwords = Top25Words))
fit <- ca(mytable1)
summary(fit)
plot(fit)
plot3d.ca(fit, labels=1)
mytable2 <- with(dat, wfm(speech, list(person, time), stopwords = Top200Words))
fit2 <- ca(mytable2)
summary(fit2)
plot(fit2)
plot3d.ca(fit2, labels=1)
## Weight a wfm
WFM <- with(DATA, wfm(state, list(sex, adult)))
plot(weight(WFM, "scaled"), TRUE)
weight(WFM, "prop")
weight(WFM, "max")
weight(WFM, "scaled")
## End(Not run)