aldmix {qbld} | R Documentation |
Asymmetric Laplace distribution
Description
Cumulative density, probability distribution function, quantile
function and random generation for the asymmetric Laplace distribution with
quantile p
, location parameter mu
and scale parameter sigma
.
Usage
raldmix(n, mu, sigma, p)
daldmix(x, mu = 0, sigma = 1, p = 0.5)
paldmix(q, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)
qaldmix(prob, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)
Arguments
n |
: number of observations |
mu |
: location parameter |
sigma |
: scale parameter |
p , prob |
: probability at which to calculate quantile |
x , q |
: vector of quantiles |
lower.tail |
: logical; decides b/w |
Details
The asymmetric Laplace distribution (ALD), which has the following pdf:
f(x;\mu,\sigma,p) = \frac{p(1-p)}{\sigma} \exp\{-\frac{(x-\mu)}{\sigma}(p-I(x \le \mu))\}
If not specified, p=0.5
, mu = 0
, sigma = 1
.
Value
-
raldmix
returns a vector of random numbers fromAL(mu,sigma,p).
-
daldmix
returns returns density ofAL(mu,sigma,p)
at point x. -
paldmix
returns CDF prob ofAL(mu,sigma,p)
at quantile q. -
qaldmix
returns inverse CDF quantile ofAL(mu,sigma,p)
at prob.
References
Keming Yu & Jin Zhang (2005) A Three-Parameter Asymmetric Laplace Distribution and Its Extension, Communications in Statistics - Theory and Methods, 34:9-10, 1867-1879, DOI: 10.1080/03610920500199018
Kobayashi, Genya. (2011). Gibbs Sampling Methods for Bayesian Quantile Regression. J Stat Comput Simul. 81. 1565. 10.1080/00949655.2010.496117.
See Also
rgig
for random sampling from GIG distribution
Examples
raldmix(n = 10, mu = 5, sigma = 10, p = 0.5)
daldmix(c(4,5),mu = 0,sigma = 1,p = 0.5)
paldmix(c(1,4),mu = 0,sigma = 1,p = 0.5,lower.tail=TRUE)
qaldmix(0.5,mu = 0,sigma = 1,p = 0.5,lower.tail=TRUE)